Реферат: Кровельные работы
Листовые материалы и штучные изделия. Листы битумные, фасонные предназначены для лицевых покрытий кровли. Армированные плиты изготовляют пресованием горячей мастики или горячей асфальтовой смеси, применяя армирование стелотканью или металлической сеткой. Неармированные плиты изготовляют из тех же смесей, но без армирования. Плиты применяют для устройства гидроизоляции и заполнения деформационных швов.
Мастики. Мастика представляет собой смесь нефтяного битума или дёгтя (отогнанного и составленного) с минеральным наполнителем. Для получения мастик применяют: пылевидные наполнители (измельчённый известняк, доломит, мел, цемент, золы твёрдых видов топлива), волокнистые наполнители (асбест, минеральную вату и др.).
Наполнители адсорбируют на своей поверхности масла, при этом повышается теплостойкость и твёрдость мастики. Кроме того, уменьшается расход битума или дёгтя; волокнистые наполнители, армируя материал, увеличивают его сопротивление изгибу.
Мастики подразделяют: по виду связующего – на битумные, битумно-резиновые, битумно-полимерные; по способу применения – на горячие, применяемые с предварительным подогревом до 160°С – для битумных мастик, и холодные, содержащие растворитель, используемые без подогрева при температуре воздуха не ниже 5°С и с подогревом до 60° - 70°С при температурах воздуха ниже 5°С; по назначению – на приклеивающие, кровельно-изоляционные, гидроизоляционные, асфальтовые и антикоррозионные.
Приклеивающие мастики применяют для склеивания рулонных материалов при устройстве многослойных кровельных покрытий и оклеечной гидроизоляции. Битумные кровельные материалы (рубероид, пергамин) приклеивают битумной мастикой, а дегтевые (толь, толь-кожа) – дегтевой.
Гидроизоляционные асфальтовые мастики применяют для устройства литой и штукатурной гидроизоляции и в качестве вяжущего для изготовления плит и других штучных изделий.
Горячие битумно-минеральные мастики изготовляют из битума с количеством минерального наполнителя 30-64% в зависимости от назначения и предъявляемых требований. Их применяют для заливочной гидроизоляции швов гидротехнических сооружений.
Холодные асфальтовые мастики (хамаст) получают, смешивая битумно-известковую пасту с минеральным наполнителем без нагрева компонентов. Их применяют для штукатурной гидроизоляции и заполнения гидроизоляционных швов.
Гидрофобный газоасфальт изготавливают на основе битумно-известковой пасты с добавкой 10-50% портландцемента и алюминиевой пудры в качестве газообразователя. Используют в конструкциях комплексных кровельных панелей и теплогидроизоляции трубопроводов.
Антикоррозионные битумные мастики служат для защиты строительных конструкций и трубопроводов от агрессивных воздействий. Существуют битумно-полимерные мастики, содержащие добавку каучука или синтетической смолы, придающей эластичность на морозе и теплостойкость.
Эмульсии и пасты. Битумные эмульсии представляют собой дисперсные системы, в которых вода является средой и в ней битум диспергирован в виде частиц размером около 1мкм. Эмульгаторами служат мыла (нафтеновых, сульфонафтеновых, смоляных органических кислот), сульфитно-дрожжевая бражка. К твёрдым эмульгаторам относятся тонкие порошки глин, извести, цемента, каменного угля, сажи. Твёрдые эмульгаторы, как и водорастворимые, адсорбируются на поверхности частиц битума, образуя защитный слой, препятствующий слипанию частиц. Приготовление эмульсии включает: разогрев битума до 50-120°С, приготовление эмульгатора, диспергирование вяжущего в воде с добавлением водного раствора эмульгатора. Пасты, являющиеся высококонцентрированными эмульсиями и эмульсиями с твёрдыми эмульгаторами, разбавляют водой до получения нужной вязкости. Эмульсии применяют для грунтовки основания под гидроизоляцию, приклеивания рулонных и штучных битумных материалов, для устройства гидро- и пароизоляционного покрытий и в качестве вяжущего вещества при изготовлении асфальтовых растворов и бетонов.
Битумно-смоляные лаки представляют растворы битумов и органических масел в органических растворителях. При добавлении алюминиевой пудры получают теплостойкую краску, идущую для окраски санитарно-технического оборудования.
Полимерные материалы по многим свойствам превосходят металлы за счёт низкой плотности, стойкости против коррозии, хороших тепло-, звуко,- электроизоляционных свойств, низких производственных расходов при переработке, возможности замены нескольких металлических деталей разного назначения одной, выполненной из полимерного материала.
II. ТЕХНОЛОГИЯ И МЕХАНИЗАЦИЯ РАБОТ ПО УСТРОЙСТВУ РУЛОННЫХ КРОВЕЛЬ
2.1. ВЫБОР УКЛОНОВ И КОНСТРУКЦИЙ ПОКРЫТИЙ (КРЫШ) В ЗАВИСИМОСТИ ОТ ЭКСПЛУАТАЦИОННЫХ УСЛОВИЙ
В современном строительстве наряду с традиционными крышами, ограждающими сверху чердак здания, широкое распространение получили так называемые совмещенные (бесчердачные) покрытия.
Совмещенные покрытия выполняют функцию несущего элемента: нижняя поверхность одновременно является потолком помещения, верхняя несет элементы кровли. В отличие от чердачных крыш совмещенные покрытия выполняют с незначительными уклонами. В зависимости от уклонов покрытий (крыш) выбирают кровельный материал. Наклонные линии на рисунке характеризуют наименьший допустимый для данного материала наклон ската крыши к горизонту. Уклон, равный 100%, соответствует углу 45°. Уклоны покрытий (крыш) даны для режима атмосферных осадков зоны с умеренным климатом. В других зонах допускаются уклоны, отличающиеся от приведенных на рисунке значений, при условии обоснования их опытом строительства и эксплуатации зданий в указанных зонах, а также с разрешения организации, утверждающей проект.
При выборе конструкции покрытия необходимо знать о сложных физических процессах, которые происходят в рулонной кровле под влиянием климатических условий.
Климатические условия. При низкой температуре наружного воздуха, сравнительно высокой температуре и относительной влажности воздуха в верхних помещениях здания нередко наблюдается появление росы в нижних слоях кровельного ковра. Это явление особенно опасно для теплой конструкции покрытия: при повреждении пароизоляционного слоя роса может появиться в теплоизоляционном слое. Излишняя влага в виде теплого и влажного воздуха будет стремиться проникнуть в верхние слои рулонного ковра вплоть до его наружного слоя. В летний период черная поверхность рулонного ковра под действием солнечной радиации сильно нагревается и часто температура в нем поднимается на 40—50° выше температуры окружающего воздуха в тени. При этом часть влаги в виде капель и паров, ранее проникшая в поры и микротрещины нижних слоев рулонного ковра, под действием более высокой температуры начинает расширяться, создавая местное давление. В результате верхние слои ковра деформируются и на его поверхности образуются различной величины вздутия (пузыри). Одновременно образовавшийся в рулонном ковре пар под действием местного давления может распространиться в стороны и вызвать разрывы полотнищ. При значительных перепадах температур в наружном слое ковра появляются новые микротрещины. Через эти трещины с наступлением весенне-летнего сезона атмосферная влага просачивается внутрь рулонного ковра и заполняет ранее образовавшиеся пузыри, превращая их в водяные мешки.
Высокая температура в рулонном ковре приводит также к чрезмерному нагреванию мастики, которой склеены его полотнища. Это явление может быть и полезным, и вредным. Полезным оно будет для рулонных полотнищ, склеенных легкоплавким составом. Например, мастика, которой склеены дегтевые полотнища рулонного ковра на пологом скате, расплавляясь, заполняет пустоты и мелкие трещины. На крутых же скатах вследствие растекания мастики ковер или отдельные его полотнища могут сползти.
Битумные мастики обладают высокой пластичностью, что позволяет им воспринимать некоторые механические напряжения, возникающие в рулонном ковре. С испарением летучих веществ, вызванным солнечной радиацией, мастика постепенно теряет эластичность и становится хрупкой. Аналогичное явление наблюдается и при низкой температуре: мастика, охлаждаясь, становится твердой и хрупкой и почти не оказывает сопротивления температурным изменениям основания и ковра. С потерей эластичности понижается прочность рулонного ковра. В нем возникают микротрещины, через которые с наступлением весенне-летнего сезона вместе с влагой проникают различные бактерии, разрушающие органические волокна полотнищ. Биологические процессы чаще поражают рулонные ковры, находящиеся на затененных скатах покрытий (крыш). В рулонных коврах, выполненных из дегтевых материалов, биологических процессов не наблюдается. Следовательно, при выборе рецептуры мастики по температуре ее размягчения (по теплостойкости) необходимо учитывать климатическую зону строительства.
Часто кровельным покрытиям из рулонных материалов значительные повреждения причиняет ветер: он срывает отдельные плохо наклеенные полотнища, а иногда и целиком ковры, особенно с карнизов крыш. Очень опасен ветер с градом (крупный град пробивает в рулонной кровле отверстия с рваными краями).
Техническая исправность покрытий с рулонными коврами в течение длительного периода, прежде всего, зависит от качества работ, выполняемых как всей бригадой кровельщиков, так и отдельными исполнителями. Поэтому кровельщики должны помнить, что все рабочие операции, входящие в комплекс устройства рулонных кровель, являются одинаково важными — пренебрежение любой из них приведет, в конечном счете, к повреждениям рулонных ковров.
Немаловажное значение имеет и качество используемых кровельных материалов.
Долговечность покрытий (крыш). Анализ наблюдений за покрытиями в эксплуатационных условиях показывает, что основными причинами недолговечности рулонных кровель являются:
образование складок, микротрещин, разрывов рулонных полотнищ, а также усадка их картонной основы вследствие недоброкачественного изготовления рулонных материалов (неполного насыщения картонной основы пропиточным веществом);
использование рулонных материалов с заниженным весом картонной основы и повышенной (нестандартной) влажностью;
слабая адгезия посыпочного материала (особенно кварцевого песка), бронирующего рулонное полотнище;
недостаточная гибкость рулонных материалов, которая приводит к появлению на полотнище трещин при раскатке рулона (часто при температуре наружного воздуха ниже —10°С).