Реферат: Круговорот второстепенных элементов: цезия и стронция

Круговорот второстепенных элементов: цезия и стронция

Выполнил: студент гр. 06-лф-1

Карев С.А.

Руководитель: д.б.н., профессор

Стаценко А.П.

Пенза 2009


Круговорот второстепенных элементов

Второстепенные элементы, подобно жизненно важным, нередко мигрируют между организмами и средой, хотя и не представляют какой-либо ценности для организмов. Большинство из этих элементов участвуют в общем осадочном цикле. Обычно они оказывают малое воздействие на живые существа. Однако могут быть и неожиданные последствия, связанные в основном с деятельностью человека. Например, радиоактивный стронций-90, ранее в природе не существовавший, по химическим свойствам похож на кальций, поэтому, попав в организмы, он накапливается в костях и оказывается в тесном контакте с кроветворными тканями. Радиоактивный цезий-137 по свойствам схож с калием и поэтому быстро циркулирует по пищевым цепям [4].

Це́зий — элемент главной подгруппы первой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 55. Обозначается символом Cs (лат. Caesium). Простое вещество цезий — мягкий щелочной металл серебристо-жёлтого цвета. Своё название цезий получил за наличие двух ярких синих линий в эмиссионном спектре (от лат. caesius — небесно-голубой). Цезий был открыт в 1860 году немецкими учёными Р. В. Бунзеном и Г. Р. Кирхгофом в водах Дюрхгеймского минерального источника в Германии методом оптической спектроскопии, тем самым, став первым элементом, открытым при помощи спектрального анализа. Цезий - один из редчайших элементов, но всё же следы его можно найти во многих горных породах, в морской воде, а также в воде минеральных источников. Любопытно, что "крохи" цезия обнаружены в сахарной свекле, зернах кофе, чайных листьях. Знаком с ним и каждый курильщик: об этом свидетельствуют две голубые линии в спектре табачного пепла.

Основными цезиевыми минералами являются поллуцит и очень редкий авогадрит (K,Cs)[BF4]. Кроме того, в виде примесей цезий входит в ряд алюмосиликатов: лепидолит, флогопит, биотит, амазонит, петалит, берилл, циннвальдит, лейцит, карналлит. В качестве промышленного сырья используются поллуцит и лепидолит [1].

При промышленном получении цезий в виде соединений извлекается из минерала поллуцита.

В России после распада СССР промышленная добыча поллуцита не велась, хотя в Вороньей тундре под Мурманском ещё в советское время были обнаружены колоссальные запасы минерала.

Цезий входит в группу химических элементов с ограниченными запасами вместе с гафнием, танталом, бериллием, рением, металлами платиновой группы, кадмием, теллуром. Общие выявленные мировые ресурсы руд составляют около 180 тыс. тонн (в пересчёте на окись цезия), но они крайне распылены, и, к сожалению, сверхвысокие цены — это неотъемлемая черта, сопровождающая цезий и рубидий в прошлом, настоящем и будущем. Мировой объём добычи цезия составляет около 9 тонн в год, а потребность свыше 85 тонн в год и она постоянно растёт. По добыче цезиевой руды (поллуцита) лидирует Канада. В месторождении Берник-Лейк (юго-восточная Манитоба) сосредоточено около 70 % мировых запасов цезия. Поллуцит также добывается в Намибии и Зимбабве. В России его мощные месторождения находятся на Кольском полуострове, в Восточном Саяне и Забайкалье. Месторождения поллуцита также имеются в Казахстане, Монголии и Италии (о. Эльба), но они обладают малыми запасами и не имеют важного экономического значения. У цезия есть и недостатки, которые обусловливают постоянный поиск его минералов: во-первых, его извлечение из руд неполное, в процессе эксплуатации материала он рассеивается и потому безвозвратно теряется, запасы его руд очень ограничены и не могут обеспечить постоянно растущий спрос на металлический цезий.

Природный цезий — мононуклидный элемент, состоящий из единственного стабильного нуклида 133Cs. На сегодняшний день известно 39 искусственных радиоактивных изотопов цезия с массовыми числами от 112 до 151. Самым долгоживущим искусственным радиоактивным нуклидом цезия является 135Cs с периодом полураспада t1/2 около 2,3 миллиона лет. Другой относительно долгоживущий изотоп 137Cs (t1/2=30,17 года). Оба эти долгоживущих радионуклида являются продуктами ядерного распада.

Ученые из индийского Института геофизических исследований, изучившие воду 60 горячих источников в Гималаях, пришли к выводу, что высокая концентрация цезия в воде может быть признаком магматической активности недр.

Повышенная концентрация радиоактивного изотопа цезия-137 обнаружена в деревьях, сохранившихся в районе знаменитого Тунгусского взрыва, причем химическая аномалия характерна как раз для тех слоев ствола, которые относятся к 1908 году, когда произошло это событие [3].

Цезий в живых организмах

Цезий в живых организмах — постоянный химический микроэлемент организма растений и животных. Морские водоросли например содержат от 0,01-0,1 мкг цезия в 1 г сухого вещества, наземные растения — 0,05—0,2. Животные получают цезий с водой и пищей. В организме членистоногих около 0,067—0,503 мкг/г цезия, пресмыкающихся — 0,04, млекопитающих — 0,05. Главное депо цезия в организме млекопитающих — мышцы, сердце, печень; в крови — до 2,8 мкг/л цезий относительно малотоксичен; его биологическая роль в организме растений и животных окончательно не раскрыта.

Цезий-137 — радиоактивный изотоп цезия, испускающий бета излучение и гамма-кванты, и один из главных компонентов радиоактивного загрязнения биосферы. Содержится в радиоактивных выпадениях, радиоактивных отходах, сбросах заводов, перерабатывающих отходы атомных электростанций. Интенсивно сорбируется почвой и донными отложениями; в воде находится преимущественно в виде ионов. Содержится в растениях и организме животных и человека. Коэффициент накопления Cs-137 наиболее высок у пресноводных водорослей и арктических наземных растений, особенно лишайников. В организме животных Cs-137 накапливается главным образом в мышцах и печени. Наибольший коэффициент накопления его отмечен у северных оленей и североамериканских водоплавающих птиц. Накапливается в грибах, ряд которых (маслята, моховики, свинушка, горькушка, польский гриб) считается «аккумуляторами» радиоцезия [1].

Стронций

Стро́нций — элемент главной подгруппы второй группы, пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 38. Обозначается символом Sr (лат. Strontium). Простое вещество стронций — мягкий, ковкий и пластичный щёлочноземельный металл серебристо-белого цвета.

Содержание стронция в земной коре — 0,384 % в свободном виде стронций не встречается. Он входит в состав около 40 минералов. Из них наиболее важный — целестин SrSO4. Добывают также стронцианит SrCO3. Эти два минерала имеют промышленное значение [2].

Стронций содержится в морской воде (0,1 мг/л), в почвах (0,035 масс%).

В природе стронций встречается в виде смеси 4 стабильных изотопов 84Sr (0,56 %), 86Sr (9,86 %), 87Sr (7,02 %), 88Sr (82,56 %).

Стронций все увереннее прокладывает себе дорогу в промышленность, спрос на него непрерывно растет. Большинство минералов стронция встречается довольно редко; лишь уже знакомый нам стронцианит и целестин (по-латыни - "небесный") образуют иногда солидные скопления.

Вот как описывает свою встречу с целестином замечательный советский геохимик и минералог академик А. Е. Ферсман: "...вдруг в одном разломанном желвачке я увидел какой-то голубой кристаллик: о, это был настоящий целестин! Чудесная прозрачная голубая иголочка, как светлый сапфир с острова Цейлон, как светлый, выгоревший на солнце василек".

Но целестин бывает не только голубым - не менее чудесны его нежно-фиолетовые, розоватые или дымчато-черные кристаллы, встречающиеся в пустотах горных пород. Необыкновенно красивы зеленоватые россыпи его мелких зерен на друзах янтарно-желтой серы. Пути образования в природе целестина (он представляет собой сернокислую соль стронция) различны, и, чтобы поведать об одном из них, мы снова предоставим слово академику А. Е. Ферсману, поскольку вряд ли кто-нибудь сможет рассказать об этом интереснее и поэтичнее, чем он: "...Давно-давно, несколько десятков миллионов лет тому назад верхнеюрское море докатывало свои волны до мощных, тогда уже существовавших Кавказских хребтов...

На дне прибрежной полосы, на камнях в бесчисленных количествах жили маленькие радиолярии; некоторые из них были прозрачны, как стекло, другие представляли собой мелкие белые шарики не больше одного миллиметра, с маленьким стебельком, в три раза большим, чем туловище. Они сидели на камнях, на красивых зарослях мшанок, а иногда покрывали даже иглы морских ежей, путешествуя с ними по морскому дну. Это были знаменитые радиолярии-акантарии, скелеты которых состояли из иголочек, числом от 18 до 32. Долгое время никто не знал, из чего они образованы, и только случайно было обнаружено, что они состоят не из кремнезема, не из опала, а из сернокислого стронция. Эти бесчисленные радиолярии накапливали в сложном жизненном процессе соль сернокислого стронция, извлекая ее из морской воды, и постепенно строили свои кристаллические иголочки.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 178
Бесплатно скачать Реферат: Круговорот второстепенных элементов: цезия и стронция