Реферат: Курсовая работа по химии. Медь
Находясь в ряду напряжений после водорода, медь не вытесняет его из кислот. Поэтому соляная и разбавленная серная кислота на медь не действуют. Однако в присутствии кислорода медь растворяется в этих кислотах с образованием соответствующих солей: .
Отношение к галогенам и некоторым другим неметаллам .
Qобразования (CuCl) = 134300 кДж
Qобразования (CuCl2 ) = 111700 кДж
Медь хорошо реагирует с галогенами, дает два вида галогенидов: CuX и CuX2 .. При действии галогенов при комнатной температуре видимых изменений не происходит, но на поверхности вначале образуется слой адсорбированных молекул, а затем и тончайший слой галогенидов. При нагревании реакция с медью происходит очень бурно. Нагреем медную проволочку или фольги и опустим ее в горячем виде в банку с хлором – около меди появятся бурые пары, состоящие из хлорида меди (II) CuCl2 с примесью хлорида меди (I) CuCl. Реакция происходит самопроизвольно за счет выделяющейся теплоты.
Одновалентные галогениды меди получают при взаимодействии металлической меди с раствором галогенида двухвалентной меди, например: . Монохлорид выпадает из раствора в виде белого осадка на поверхности меди.
Оксид меди .
При прокаливании меди на воздухе она покрывается черным налетом, состоящим из оксида меди . Его также легко можно получить прокаливанием гидроксокарбоната меди (II) (CuOH)2 CO3 или нитрата меди (II) Cu(NO3 )2 . При нагревании с различными органическими веществами CuOокисляет их, превращая углерод в диоксид углерода, а водород – в воду восстанавливаясь при этом в металлическую медь. Этой реакцией пользуются при элементарном анализе органических веществ для определения содержания в них углерода и водорода.
Под слоем меди расположен окисел розового цвета – закись меди Cu2 O. Этот же окисел получается при совместном прокаливании эквивалентных количеств меди и окиси меди, взятых в виде порошков: .
Закись меди используют при устройстве выпрямителей переменного тока, называемых купроксными. Для их приготовления пластинки меди нагревают до 1020-1050 0 C. При этом на поверхности образуется двухслойная окалина, состоящая из закиси меди и окиси меди. Окись меди удаляют, выдерживая пластинки некоторое время в азотной кислоте: .
Пластинку промывают, высушивают и прокаливают при невысокой температуре – и выпрямитель готов. Электроны могут проходить только от меди через закись меди. В обратном направлении электроны проходить не могут. Это объясняется тем, что закись меди обладает различной проводимостью. В слое закиси меди, который примыкает непосредственно к меди, имеется избыток электронов, и электрический ток проходит за счет электронов, т.е. существует электронная проводимость. В наружном слое закиси меди наблюдается нехватка электронов, что равноценно появлению положительных зарядов. Поэтому, когда к меди подводят положительный плюс источника тока, а к закиси меди – отрицательный, то электроны через систему не проходят. Электроны при таком положении полюсов движутся к положительному электроду, а положительные заряды – к отрицательному. Внутри слоя закиси возникает тончайший слой, лишенный носителей электрического тока, - запирающий слой. Когда же медь подключена к отрицательному полюсу, а закись меди к положительному, то движение электронов и положительных зарядов изменяется на обратное, и через систему проходит электрический ток. Так работает купроксный выпрямитель. [6,с.63]
Гидроксиды меди .
Гидроксид меди малорастворимое и нестойкое соединение. Получают его при действии щелочи на раствор соли: . Это ионная реакция и протекает она потому, что образуется плохо диссоциированное соединение, выпадающее в осадок:
Медь, помимо гидроксида меди (II) голубого цвета, дает еще гидроксид меди (I) белого цвета: . Это нестойкое соединение, которое легко окисляется до гидроксида меди (II): .
Оба гидроксида меди обладают амфотерными свойствами. Например, гидроксид меди (II) хорошо растворим не только в кислотах, но и в концентрированных растворах щелочей: , .
Таким образом, гидроксид меди (II) может диссоциировать и как основание: и как кислота. Этот тип диссоциации связан с присоединением меди гидроксильных групп воды:
Сульфаты .
Наибольшее практическое значение имеет CuSO4 *5H2 O, называемый медным купоросом. Его готовят растворением меди в концентрированной серной кислоте. Поскольку медь относится к малоактивным металлам и расположена в ряду напряжений после водорода, водород при этом не выделяется: .
Медный купорос применяют при электролитическом получении меди, в сельском хозяйстве для борьбы с вредителями и болезнями растений, для получения других соединений меди.
Карбонаты .
Карбонаты для металлов подгруппы меди не характерны и в практике почти не применяются. Некоторое значение для получения меди имеет лишь основной карбонат меди, который встречается в природе.
Комплексообразование .
Характерное свойство двухзарядных ионов меди – их способность соединятся с молекулами аммиака с образованием комплексных ионов.
Качественные реакции на ионы меди .
Ион меди можно открыть, прилив к раствору ее соли раствор аммиака. Появление интенсивного сине-голубого окрашивания связано с образованием комплексного иона меди [Cu(NH3 )4 ]2+ :
Медь интенсивно окрашивает пламя в зеленый цвет.
Пример качественного анализа сплава меди .
Исследуемый объект | Реагент, действие | Осадок | Раствор | Наблюдение | Выводы |
Часть сплава | Нагревание с конц. HNO3 | Раствор 1 сразу приобрёл зелёную окраску, которая перешла в голубую после охлаждения | |||
Раствор 1 | 25% NH3 , Добавление 1-2 капли | Раствор стал синим | Это медный сплав | ||
Часть сплава | HNO3 , Сначала растворяют часть стружек в 10 каплях 6М HNO3 , а затем добавляют 20-25 капель конц. HNO3 , нагревают до полного растворения сплава | Раствор 2 может содержать Cu, Zn, Ni, Cd, Fe, Mn, Al, Pb, Sn, Sb | Осадок не выпал | ||
Раствор 2, Ni2+ | Диметил-глиоксим | Раствор позеленел | Ni нет | ||
Fe3+ | NH4 CNS | Кристаллы окрасились в красный цвет, потом раствор позеленел и выпал чёрный осадок | Есть Fe3+ | ||
Cd2+ | Дифенил-карбазид | Раствор стал красным | Есть Cd | ||
Zn2+ | Дитизон | Фаза дитизона окрасилась в малиновый цвет | Есть Zn | ||
Mn | NaBiO3 | Ничего не произошло | Mn нет | ||
Al3+ | Ализарин | Раствор стал жёлто-коричневым | Al нет | ||
Окси-хинолин | Выпал зелёно-жёлтый осадок | Al нет | |||
Раствор 2 | HCl, H2 SO4 , добавление | Раствор 3 возможно содержит Sb, Sn | Осадок не выпал | Pb возможно нет | |
Раствор 3 | H2 O2 и NaOH | Осадок 1 может содержать Sb | Раствор 4 может содержать Sn |
Выпал зелёно-серый осадок (образовался ос.2 и р-р 2) | |
Осадок 1 | HNO3 | Раствор 5 | Осадок растворился | Sb нет | |
Раствор 5 | NH3 , NH4 Cl, H2 O2 | Осадок не выпал | |||
Раствор 4 | NH4 Cl | Осадок не выпал | Sn нет | ||
Раствор 2 | I- | Выпал жёлтый осадок, который приобрёл красный оттенок | Есть Pb2+ |
Выводы :
Проведённый качественный анализ даёт основания считать, что в сплаве содержится медь, цинк, кадмий, железо, свинец. Таким образом этот сплав является латунью. [8]
6. Получение меди.
История получения меди .
Интересна история получения меди. Уже 5-6 тысяч лет до н.э. медная руда добывалась египетскими рабами в Нубии, на Синайском полуострове. Рудники, как пишет греческий историк Диодор Сицилийский (I век до н.э.), являлись собственностью фараонов. На каторжный труд в рудниках отправляли рабов и осужденных, зачастую вместе с семьями. В наиболее узкие штольни на обивку руды и ее вынос направляли детей. На поверхность руду доставляли в плетеных корзинках или кожаных мешках. Древнейшая медеплавильная печь найдена на Синайском полуострове. Она представляла яму, обнесенную круглой стеной толщиной в 1 метр. Печь имела внизу два поддувала. По составу шлака установили, что в этой печи выплавлялась медь. Изображение более совершенной печи было обнаружено на греческой вазе, которая датируется VI веком до н.э. Для улучшения литейных свойств меди греки добавляли в руду оловянный камень (двуокись олова) и получали оловянную бронзу.
Искусство получения меди и ее сплавов затем перешло к римлянам. Оловянную руду римляне доставали из Англии, которая в то время называлась Касситеридскими островами. Интересно отметить, что минерал – двуокись олова и по настоящее время называется касситеритом.
О методах получения меди в России дает представление небольшой, но обстоятельный труд М.В.Ломоносова “Основание металлургии” (1763 год), который сыграл исключительную роль в развитии металлургического производства. В этой же книги дано описание “сульфатизирующего обжига”. Он заключался в медленном окислении медной сульфидной руды до сульфата меди кислородом воздуха: с последующим выщелачиванием соли водой с целью получения медного купороса.
В книге даются указания, как использовать теплоту отходящих газов, как контролировать процесс плавки и даже как вентилировать шахты от пыли и газов, которые “для человеческого здоровья вредительны”. [1, с.76-77]
Получение меди методом электролиза .
Электролиз широко применяют для очистки (рафинирования) меди. Для очистки меди из черновой меди отливают аноды – толстые пластины. Их подвешивают в ванну, содержащую раствор медного купороса. В качестве катодов используют тонкие листы чистой меди, на которые во время электролиза осаждается чистая медь. На аноде происходит растворение меди. Ионы меди передвигаются к катоду, принимают от катода электроны и переходят в атомы: . Чистая медь оседает на катоде.
Примеси, входящие в состав черновой меди ведут себя по-разному. Более электроотрицательные элементы – цинк, железо, кадмий и другие растворяются на аноде. Но на катоде эти металлы не выделяются, так как электрохимическом ряду напряжений они находятся левее меди и имеют более отрицательные потенциалы. [1, с.70]
Металлотермический метод получения .