Реферат: Квантовые компьютеры

Для описания поведения кван­товых систем было введено понятие волновой функции. Существуют волновые функции, называемые собственными для какой-то кон­кретной измеряемой величины. В состоянии, описываемом собствен­ной функцией, значение этой вели­чины может быть точно предсказа­но до ее измерения. Именно с таки­ми состояниями работает обычная память. Квантовая же система может находиться и в состоянии с волно­вой функцией, равной линейной комбинации собственных функции, соответствующих каждому из воз­можных значений (назовем здесь такие состояния сложными). В сложном состоянии результат из­мерения величины не может быть предсказан заранее. Заранее из­вестно только, с какой вероятно­стью мы получим то или иное зна­чение. В отличие от обычного ком­пьютера, в квантовом для представ­ления данных используются такие ячейки памяти, которые могут на­ходиться в сложном состоянии. В нашем примере мы определили бы, что спин электрона с определенной вероятностью смотрит вверх и вниз, то есть можно сказать, что в кубит записаны сразу и 0, и 1. Количество информации, содержащееся в та­кой ячейке, и саму ячейку называют квантовым битом, или, сокращен­но, кубитом. Согласитесь, ячейки в сложных состояниях весьма не­обычны для классической теории информации. Каждому возможно­му значению величины, представ­ленной кубитом, соответствует ве­роятность, с которой это значение может быть получено при чтении. Эта вероятность равна квадрату мо­дуля коэффициента, с которым соб­ственная функция этого значения входит в линейную комбинацию. Именно вероятность и является ин­формацией, записанной в кубит.

Квантовую механику не случай­но называют иногда волновой ме­ханикой. Дело в том, что квантово-механические волновые функции ведут себя подобно световой или какой-либо другой волне. И для волновых функций, благодаря их способности интерферировать, также может быть введено понятие когерентности. Именно это свой­ство используется в когерентном квантовом компьютере. Набор кубитов представляется когерентны­ми волновыми функциями. Ока­зывается, что существует вполне определенный класс воздействий на квантовую систему, называе­мый унитарными преобразования­ми, при которых не теряется запи­санная в кубит информация и не нарушается когерентность волно­вых функций кубитов. Унитарные преобразования обратимы - по результату можно восстановить ис­ходные данные. После прохожде­ния через квантовый процессор, использующий унитарные преоб­разования, волновые функции ку­битов заставляют интерферировать друг с другом, наблюдая получаю­щуюся картину и судя по ней о результате вычисления.

Из-за того, что для представле­ния информации используются кубиты, в которых записано сразу оба значения - и 0 , и 1 , в процессе вычислений происходит парал­лельная обработка сразу всех воз­можных вариантов комбинаций би­тов в процессорном слове. Таким образом, в КК реализуется естест­венный параллелизм, недоступный классическим компьютерам. За счет возможности параллельной работы с большим числом вариантов, в идеале равным 2 N (где N - число кубитов), квантовому компьютеру необходимо гораздо меньше вре­мени для решения определенного класса задач. К ним относятся, на­пример, задача разложения числа на простые множители или поиск в большой базе данных. Для коге­рентного компьютера уже предло­жены алгоритмы, использующие его уникальные свойства. Кроме того, предполагается использовать КК для моделирования квантовых систем, что трудно или вообще невозможно сделать на обычных компьютерах из-за нехватки мощности или по принципиальным соображениям.

Все существующие на сегодняш­ний день обычные компьютеры, да­же с параллельной обработкой ин­формации на многих процессорах, могут быть смоделированы так на­зываемым клеточным автоматом Тьюринга. Это существенно детер­минированная и дискретная маши­на. С возникновением и обсуждени­ем идей квантовых вычислений ста­ла активно развиваться квантовая теория информации и, в частности, теория квантовых клеточных авто­матов - ККА. Квантовый клеточный автомат является обобщением авто­мата Тьюринга для КК. Сформули­рована гипотеза, гласящая, что каж­дая конечным образом реализуемая физическая система может быть дос­таточно хорошо смоделирована универсальной моделью квантовой вычислительной машины, исполь­зующей ограниченное количество ресурсов. Для одного из предложенных типов ККА теоретически уже доказано, что он подходит для тако­го моделирования и не противоре­чит квантовой теории.

Пытаясь осуществить свой за­мысел, ученые упираются в про­блему сохранения когерентности волновых функций кубитов, так как потеря когерентности хотя бы од­ним из кубитов разрушила бы ин­терференционную картину. В на­стоящее время основные усилия экспериментальных рабочих групп направлены на увеличение отно­шения времени сохранения коге­рентности ко времени, затрачивае­мому на одну операцию (это отно­шение определяет число операций, которые можно успеть провести над кубитами). Главной причиной по­тери когерентности является связь состояний, используемых для ку­битов, со степенями свободы, не участвующими в вычислениях. На­пример, при передаче энергии элек­трона в возбужденном атоме в по­ступательное движение всего ато­ма. Мешает и взаимодействие с ок­ружающей средой, например, с со­седними атомами материала ком­пьютера или магнитным полем Зем­ли, но это не такая важная проблема. Вообще, любое воздействие на ко­герентную квантовую систему, ко­торое принципиально позволяет получить информацию о каких-ли­бо кубитах системы, разрушает их когерентность. Потеря когерентно­сти может произойти и без обмена энергией с окружающей средой.

Воздействием, нарушающим когерентность, в частности, явля­ется и проверка когерентности. При коррекции ошибок возникает сво­его рода замкнутый круг: для того чтобы обнаружить потерю коге­рентности, нужно получить ин­формацию о кубитах, а это, в свою очередь, также нарушает когерент­ность. В качестве выхода предло­жено много специальных методов коррекции, представляющих так­же и большой теоретический инте­рес. Все они построе­ны на избыточном кодировании.

Если в области передачи инфор­мации уже созданы реально рабо­тающие системы и до коммерческих продуктов осталось лишь несколько шагов, то коммерческая реализация квантового когерентного процессо­ра - дело будущего. К настоящему времени КК научился вычислять сум­му 1+1 ! Это большое достижение, если учесть, что в виде результата он выдает именно 2 , а не 3 и не 0 . Кроме того, не следует забывать, что и пер­вые обычные компьютеры были не особенно мощны.

Сейчас ведется работа над дву­мя различными архитектурами процессоров: типа клеточного ав­томата и в виде сети логических элементов. Пока не известно о ка­ких-либо принципиальных пре­имуществах одной архитектуры перед другой. Как функциональ­ная основа для логических эле­ментов квантового процессора бо­лее или менее успешно использу­ется целый ряд физических явле­ний. Среди них - взаимодействие одиночных поляризованных фо­тонов или лазерного излучения с веществом или отдельными ато­мами, квантовые точки, ядерный магнитный резонанс и - наибо­лее многообещающий - объем­ный спиновый резонанс. Процессор, постро­енный на последнем принципе, в шутку называют «компьютером в чашке кофе» - из-за того, что в нем работают молекулы жидкости при комнатной температуре и ат­мосферном давлении. Кроме этих эффектов есть довольно хорошо развитая технология логических элементов и ячеек памяти на джозефсоновских переходах, которую можно при соответствующих ус­ловиях приспособить под коге­рентный процессор.

Теорию, описывающую явле­ния, лежащие в основе первого типа логических ячеек, называют квантовой электродинамикой в по­лости или резонаторе. Кубиты хра­нятся в основных и возбужденных состояниях атомов, расположен­ных некоторым образом на равных расстояниях в оптическом резона­торе. Для каждого атома исполь­зуется отдельный лазер, приводя­щий его в определенное состояние с помощью короткого импульса. Взаимовлияние атомных состоя­ний происходит посредством об­мена фотонов в резонаторе. Ос­новными причинами разрушения когерентности здесь служат спон­танное излучение и выход фото­нов за пределы резонатора.

В элементах на основе ионов в линейных ловушках кубиты хра­нятся в виде внутренних состояний пойманных ионов. Для управле­ния логикой и для манипулирова­ния отдельными кубитами также используются лазеры. Унитарные преобразования осуществляются возбуждением коллективных кван­тованных движений ионов. Источ­никами некогерентности является спонтанный распад состояний ио­нов в другие внутренние состояния и релаксация в колебательные сте­пени свободы.

Сильно отличается от двух пре­дыдущих «компьютер в чашке ко­фе». Благодаря достоинствам данного метода этот ком­пьютер является наиболее реаль­ным претендентом на то, чтобы достигнуть разрядности 10 бит в бли­жайшее время. В компьютере на кол­лективном спиновом резонансе ра­ботают молекулы обычных жидко­стей (без всяких квантовых вывертов типа сверхтекучести). В качестве ку­битов используется ориентация ядерных спинов. Работа логических ячеек и запись кубитов осуществля­ется радиочастотными электромаг­нитными импульсами со специаль­но подобранными частотой и фор­мой. В принципе, прибор похож на обычные приборы ядерного маг­нитного резонанса (ЯМР) и исполь­зует аналогичную аппаратуру. Жиз­неспособность этого подхода обес­печивается, с одной стороны, очень слабой связью ядерных спинов с окружением и, потому, большим временем сохранения когерентно­сти (до тысяч секунд). Эта связь ос­лаблена из-за экранирования ядер­ных спинов спинами электронов из оболочек атомов. С другой стороны, можно получить сильный выход­ной сигнал, так как для вычислений параллельно используется большое количество молекул. «Не так уж сложно измерить спин четвертого ядра у какого-то типа молекул, если у вас имеется около числа Авогадро (~1023 ) таких молекул», - говорит Ди Винченцо (Di Vincenzo), один из исследователей. Для определения результата непрерывно контроли­руют излучение всего ансамбля. Та­кое измерение не приводит к потере когерентности в комп?

К-во Просмотров: 1952
Бесплатно скачать Реферат: Квантовые компьютеры