Реферат: Квантовые компьютеры
Для описания поведения квантовых систем было введено понятие волновой функции. Существуют волновые функции, называемые собственными для какой-то конкретной измеряемой величины. В состоянии, описываемом собственной функцией, значение этой величины может быть точно предсказано до ее измерения. Именно с такими состояниями работает обычная память. Квантовая же система может находиться и в состоянии с волновой функцией, равной линейной комбинации собственных функции, соответствующих каждому из возможных значений (назовем здесь такие состояния сложными). В сложном состоянии результат измерения величины не может быть предсказан заранее. Заранее известно только, с какой вероятностью мы получим то или иное значение. В отличие от обычного компьютера, в квантовом для представления данных используются такие ячейки памяти, которые могут находиться в сложном состоянии. В нашем примере мы определили бы, что спин электрона с определенной вероятностью смотрит вверх и вниз, то есть можно сказать, что в кубит записаны сразу и 0, и 1. Количество информации, содержащееся в такой ячейке, и саму ячейку называют квантовым битом, или, сокращенно, кубитом. Согласитесь, ячейки в сложных состояниях весьма необычны для классической теории информации. Каждому возможному значению величины, представленной кубитом, соответствует вероятность, с которой это значение может быть получено при чтении. Эта вероятность равна квадрату модуля коэффициента, с которым собственная функция этого значения входит в линейную комбинацию. Именно вероятность и является информацией, записанной в кубит.
Квантовую механику не случайно называют иногда волновой механикой. Дело в том, что квантово-механические волновые функции ведут себя подобно световой или какой-либо другой волне. И для волновых функций, благодаря их способности интерферировать, также может быть введено понятие когерентности. Именно это свойство используется в когерентном квантовом компьютере. Набор кубитов представляется когерентными волновыми функциями. Оказывается, что существует вполне определенный класс воздействий на квантовую систему, называемый унитарными преобразованиями, при которых не теряется записанная в кубит информация и не нарушается когерентность волновых функций кубитов. Унитарные преобразования обратимы - по результату можно восстановить исходные данные. После прохождения через квантовый процессор, использующий унитарные преобразования, волновые функции кубитов заставляют интерферировать друг с другом, наблюдая получающуюся картину и судя по ней о результате вычисления.
Из-за того, что для представления информации используются кубиты, в которых записано сразу оба значения - и 0 , и 1 , в процессе вычислений происходит параллельная обработка сразу всех возможных вариантов комбинаций битов в процессорном слове. Таким образом, в КК реализуется естественный параллелизм, недоступный классическим компьютерам. За счет возможности параллельной работы с большим числом вариантов, в идеале равным 2 N (где N - число кубитов), квантовому компьютеру необходимо гораздо меньше времени для решения определенного класса задач. К ним относятся, например, задача разложения числа на простые множители или поиск в большой базе данных. Для когерентного компьютера уже предложены алгоритмы, использующие его уникальные свойства. Кроме того, предполагается использовать КК для моделирования квантовых систем, что трудно или вообще невозможно сделать на обычных компьютерах из-за нехватки мощности или по принципиальным соображениям.
Все существующие на сегодняшний день обычные компьютеры, даже с параллельной обработкой информации на многих процессорах, могут быть смоделированы так называемым клеточным автоматом Тьюринга. Это существенно детерминированная и дискретная машина. С возникновением и обсуждением идей квантовых вычислений стала активно развиваться квантовая теория информации и, в частности, теория квантовых клеточных автоматов - ККА. Квантовый клеточный автомат является обобщением автомата Тьюринга для КК. Сформулирована гипотеза, гласящая, что каждая конечным образом реализуемая физическая система может быть достаточно хорошо смоделирована универсальной моделью квантовой вычислительной машины, использующей ограниченное количество ресурсов. Для одного из предложенных типов ККА теоретически уже доказано, что он подходит для такого моделирования и не противоречит квантовой теории.
Пытаясь осуществить свой замысел, ученые упираются в проблему сохранения когерентности волновых функций кубитов, так как потеря когерентности хотя бы одним из кубитов разрушила бы интерференционную картину. В настоящее время основные усилия экспериментальных рабочих групп направлены на увеличение отношения времени сохранения когерентности ко времени, затрачиваемому на одну операцию (это отношение определяет число операций, которые можно успеть провести над кубитами). Главной причиной потери когерентности является связь состояний, используемых для кубитов, со степенями свободы, не участвующими в вычислениях. Например, при передаче энергии электрона в возбужденном атоме в поступательное движение всего атома. Мешает и взаимодействие с окружающей средой, например, с соседними атомами материала компьютера или магнитным полем Земли, но это не такая важная проблема. Вообще, любое воздействие на когерентную квантовую систему, которое принципиально позволяет получить информацию о каких-либо кубитах системы, разрушает их когерентность. Потеря когерентности может произойти и без обмена энергией с окружающей средой.
Воздействием, нарушающим когерентность, в частности, является и проверка когерентности. При коррекции ошибок возникает своего рода замкнутый круг: для того чтобы обнаружить потерю когерентности, нужно получить информацию о кубитах, а это, в свою очередь, также нарушает когерентность. В качестве выхода предложено много специальных методов коррекции, представляющих также и большой теоретический интерес. Все они построены на избыточном кодировании.
Если в области передачи информации уже созданы реально работающие системы и до коммерческих продуктов осталось лишь несколько шагов, то коммерческая реализация квантового когерентного процессора - дело будущего. К настоящему времени КК научился вычислять сумму 1+1 ! Это большое достижение, если учесть, что в виде результата он выдает именно 2 , а не 3 и не 0 . Кроме того, не следует забывать, что и первые обычные компьютеры были не особенно мощны.
Сейчас ведется работа над двумя различными архитектурами процессоров: типа клеточного автомата и в виде сети логических элементов. Пока не известно о каких-либо принципиальных преимуществах одной архитектуры перед другой. Как функциональная основа для логических элементов квантового процессора более или менее успешно используется целый ряд физических явлений. Среди них - взаимодействие одиночных поляризованных фотонов или лазерного излучения с веществом или отдельными атомами, квантовые точки, ядерный магнитный резонанс и - наиболее многообещающий - объемный спиновый резонанс. Процессор, построенный на последнем принципе, в шутку называют «компьютером в чашке кофе» - из-за того, что в нем работают молекулы жидкости при комнатной температуре и атмосферном давлении. Кроме этих эффектов есть довольно хорошо развитая технология логических элементов и ячеек памяти на джозефсоновских переходах, которую можно при соответствующих условиях приспособить под когерентный процессор.
Теорию, описывающую явления, лежащие в основе первого типа логических ячеек, называют квантовой электродинамикой в полости или резонаторе. Кубиты хранятся в основных и возбужденных состояниях атомов, расположенных некоторым образом на равных расстояниях в оптическом резонаторе. Для каждого атома используется отдельный лазер, приводящий его в определенное состояние с помощью короткого импульса. Взаимовлияние атомных состояний происходит посредством обмена фотонов в резонаторе. Основными причинами разрушения когерентности здесь служат спонтанное излучение и выход фотонов за пределы резонатора.
В элементах на основе ионов в линейных ловушках кубиты хранятся в виде внутренних состояний пойманных ионов. Для управления логикой и для манипулирования отдельными кубитами также используются лазеры. Унитарные преобразования осуществляются возбуждением коллективных квантованных движений ионов. Источниками некогерентности является спонтанный распад состояний ионов в другие внутренние состояния и релаксация в колебательные степени свободы.
Сильно отличается от двух предыдущих «компьютер в чашке кофе». Благодаря достоинствам данного метода этот компьютер является наиболее реальным претендентом на то, чтобы достигнуть разрядности 10 бит в ближайшее время. В компьютере на коллективном спиновом резонансе работают молекулы обычных жидкостей (без всяких квантовых вывертов типа сверхтекучести). В качестве кубитов используется ориентация ядерных спинов. Работа логических ячеек и запись кубитов осуществляется радиочастотными электромагнитными импульсами со специально подобранными частотой и формой. В принципе, прибор похож на обычные приборы ядерного магнитного резонанса (ЯМР) и использует аналогичную аппаратуру. Жизнеспособность этого подхода обеспечивается, с одной стороны, очень слабой связью ядерных спинов с окружением и, потому, большим временем сохранения когерентности (до тысяч секунд). Эта связь ослаблена из-за экранирования ядерных спинов спинами электронов из оболочек атомов. С другой стороны, можно получить сильный выходной сигнал, так как для вычислений параллельно используется большое количество молекул. «Не так уж сложно измерить спин четвертого ядра у какого-то типа молекул, если у вас имеется около числа Авогадро (~1023 ) таких молекул», - говорит Ди Винченцо (Di Vincenzo), один из исследователей. Для определения результата непрерывно контролируют излучение всего ансамбля. Такое измерение не приводит к потере когерентности в комп?