Реферат: Лабораторная работа по информатике ( задания )
Лабораторная работа 3
ИЗУЧЕНИЕ ПРИНЦИПОВ ОРГАНИЗАЦИИ АРИФМЕТИКО-ЛОГИЧЕСКИЗ УСТРОЙСТВ. СТРУКТУРА АЛУ ДЛЯ УМНЛЖЕНИЯ ЧИСЕЛ С ФИКСИРОВАННОЙ ЗАПЯТОЙ
Ц е л ь р а б о т ы: Изучение принципов построения и функционирования АЛУ для умножения чисел с фиксированной запятой.
В в е д е н и е
В ЭВМ операция умножения чисел с фиксированной запятой с помощью соответствующих алгоритмов сводится к операциям сложения и сдвига. Для выпонения умножения АЛУ должно содержать регистры множимого, множителя и схемы формирования суммы частичных произведений - так называемый сумматор частичных произведений, в котором путем соответствующей организации передач производится поседовательное суммирование частичных произведений.
Операция умножения состоит из n-1 [(n-1) - число цифровых разрядов множителя] циклов. В каждом цикле анализируется очередная цифра множителя и если это "1", то к сумме частичных произведений прибавляется множимое, в противном сучае прибавления не происходит. Цикл завершается сдвигом множимого относительно суммы частичных произведений ,либо сдвигом суммы частичных произведений относительно неподвижного множимого.
В зависимости от способа формирования суммы частичных произведений различают четыре основных метода выполнения умножения с соответствующими структурами АЛУ.
1.Умножение, начиная с младших разрядов множителя, со сдвигом суммы частичных произведений вправо при неподвижном множимом.
2.Умножение, начиная с младших разрядов множителя, при сдвиге множимого влево и неподвижной сумме частичных произведений.
3.Умножение, начиная со старших разрядов множителя, при сдвиге суммы частичных произведений влево и неподвижном множимом.
4.Умноженине, начиная со старших разрядов множителя, при сдвиге вправо множимого и неподвижной сумме частичных произведений.
В лабораторной работе изучается наиболее распространенный метод умножения целых чисел, начиная с младших разрядов, со сдвигом суммы частичных произведений вправо. (рис.2)
А л г о р и т м
умножения чисел, представленных в прямом коде,
начиная с младших разрядов, со сдвигом суммы
частичных произведений вправо.
1.Берутся модули от сомножителей.
2.Исходное значение суммы частичных произведений принимается равным 0.
3.Если анализируемая цифра множителя равна 1, то к сумме частичных произведений прибавляется множимое; если эта цифра равна 0, прибавление не производится.
4.Производится сдвиг суммы частичных произведений вправо на один разряд.
5.Пункты 3 и 4 последовательно выполняются для всех цифровых разрядов множителя, начиная с младшего.
6.Произведению присваивается знак плюс, если знаки сомножителей одинаковы, в противном случае - знак минус.
Особенностью умножения целых чисел является то, что результат перемножения двух n-разрядных слов представляется словом двойной длины, при этом число цифровых разрядов двойного слова 2n-1 на единицу больше числа 2n-2 цифровых разрядов, произведения двух n-1 разрядных чисел. В связи с этим после получения результата в формате двойного слова необходимо дополнительно сдвинуть его цифровые разряды на один разряд вправо, чтобы правильно расположить произведение в разрядной сетке.
В структуру АЛУ для умножения n-разрядных целых чисел входят (рис.2): входной регистр множимого Pr1, регистры множителя Pr2 и Pr2',на которых с помощью косой передачи вправо Pr2':=n(1)Pr2 и передачи Pr2:=Pr2' выполняется сдвиг множителя вправо; сумматор Cm для преобразования суммы частичных произведений; входной и выходной регистры суммы частичных произведений; входной и выходной регистры сумматора PrA, PrB, PrCm соответственно, в которых хранятся текущие значения и образуется новое значение суммы, счетчик циклов СчЦ. Работа АЛУ при умножении целых положительных чисел происходит следующим образом. Первоначально на Pr1 поступает множимое, регистр PrB, хранящий сумму частичных произведений обнуляется. В счетчик циклов СчЦ заносится число цифровых разрядов сомножителей. В регистр Pr2 записывается множитель. На этом завершается процедура начальных установок и начинается процесс вычислений.
В зависимости от значения младшего разряда 0 или 1 множителя к частичному произведению прибавляется либо 0, либо множимое. В первом случае PrA:=0, во втором - PrA:=Pr1. В сумматоре получаем сумму PrA и PrB . Содержимое Pr2 путем косой передачи вправо в Pr2' и затем обратно сдвигается на один разряд вправо. Цифра младшего разряда суммы частичных поизведений передается в старший разряд Pr2'.
Производится сдвиг суммы частичных произведений вправо на один разряд: косая передача из сумматора в PrCm со сдвигом вправо на один разряд, а затем передача PrB:=PrCm. Содержимое счетчика тактов уменьшается на единицу.
Если СчЦ <> 0, то все операции повторяются.
Если СчЦ=0, то вычисления заканчиваются в регистре PrCm и Pr2' будут хранться старшие и младшие разряды произведения.
Знак произведения определяется суммированием по mod2 знаковых разрядов сомножителей.
В ы п о л н е н и е
л а б о р а т о р н о й р а б о т ы
Структура АЛУ для умножения чисел с фиксированной запятой и алгоритм его функционирования моделируется с помощью программы, реализованной на языке Турбо-Паскаль-7.
Работа с программой осуществляется в интерактивном режиме. После запуска программы mult.exe на экране дисплея появляется инструкция для пользователя, согласно которой и выполняется лабораторная работа. Текст описания работы содержится в файле ...
Выполнение изучаемой операции АЛУ осуществляется по шагам и результат каждого шага отражается на экране в виде кодов содержимого соответсвующего регистров, промежуточных и конечных результатов. В процессе выполнения лабораторной работы необходимо зафиксировать по шагам состояние всех элементов АЛУ, индицируемые соответствующими кодами.
Работу АЛУ необходимо изучить для различных значений операндов.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--