Реферат: Лантаноиды
В России созданы высокопрочные магниевые сплавы, легированные неодимом и цирконием. Предел длительной прочности при повышенных температурах на много больше, чем у магниевых сплавов, легированных другими элементами.
Алюминий, легированный неодимом, химически взаимодействует с ним. Образуются соединения состава NdAl4 и NdAl2 . В итоге 5 %-ная добавка неодима вдвое увеличивает предел прочности алюминия ( с 5 до 10 кг/мм2 ). Во много раз возрастает твердость сплава.
Подобным же образом неодим действует и на свойства титана.1,2 % церия увелечили предел прочности титана с 32 до 38-40 кг/мм2 , а примерно такая же добавка неодима - до 48-50 кг/мм2 .
ПРОМЕТИЙ.
Прометий - один из 4 исскуственных не трансурановых элементов. В природе он образуется в результате радиоактивного распада ядер тяжелых элементов. Обнаружить прометий в земной коре удалось лишь после того, как он был получен исскуственным путем.
Элемент N61 открыли в 1947 году американские исследователи Маринский, Гленденин и Кориел среди продуктов, образуюшихся в ядерном реакторе.
Сейчас известно 14 изотопов прометия. Все они радиоактивны. Самый долгоживущий из них - прометий-145 с периодом полураспада около 18 лет. Практически наиболее важен прометий-147 (период полураспада 2,64 года), который используют в миниатюрных атомных батареях, способных давать электроэнергию в течение нескольких лет. Такие батарей можно использовать как источник тока на космических кораблях, управляемых снарядах, радиоустройствах, часах и даже слуховых аппаратах.
В прометиевой атомной ботарее происходит двукратное преобразование энергии. Сначало излучение прометия застовляет светиться специальный люминесцирующий состав (фосфор), а световая энергия преобразуется в электрическую в кремниевом фотоэлементе. На одну батарейку используется всего 5 мгм окиси прометия-147. Особенность прометия-147 в том, что он не испускает гамма-лучей, а дает лишь мягкое бета-излучение, задерживаемое даже тонким слоем фосфора и корпусом батареи.
САМАРИЙ.
В середине прошлого века на Урале был найден черный блестящий минерал. В книге Н.А.Фигуровского "Открытия элементов и происхождение их названий" (как и в большинстве книг по истории науки) говорится, что этот минерал открыт русским горным инженером В.Е.Самарским. Авторы книги "От водорода до ...?" П. Р. Таубе и Е. И. Руденко утверждают несколько иное.
"В середине прошлого века на Алтае и Урале смотрителем горного округа был инженер В. Е. Самарский. Особыми талантами он не отличался. Однажды рабочие принесли ему найденный в Ильменских горах неизвестный минерал очень красивого бархатно-черного цвета. Присутствовавший при этом угодливый чиновник предложил назвать минерал в честь смотрителя горного округа самарскитом. "Находчивость" чиновника была одобрена, минерал "окрещен" и вошел в коллекцию... Так было увековечено имя инженера Самарского, ничем не заслужившего такой чести".
Так или иначе, первая глава истории самария связана с Россией. Вторая-с Францией.
В 1878 году французский химик Делофонтен работал с самарскитом и выделил из него окись дидима. Основным оружием искателей новых элементов в эти годы уже был спектральный анализ. В спектре дидима, полученного из самарскита, Делафонтен обнаружил две новые голубые линии. Решив, что они принадлежат новому элементу, он сразу же дал этому элементу название: деципий - от латинского decipere, что значит "обманывать,одурачивать".
Вскоре появились и другие сообщения о необычных спектральных линиях в окиси дидима. Окончательно подтвердил неоднородность этого вещества другой французский химик - Лекок де Буабодран. Он, как и Делафонтен, нашел две новые голубые линии (с длинами волн 400 и 417 Å), но эти линии отличались от линий деципия. В 1879 году Лекок де Буабодран назвал новый элемент самарием.
Через год швейцарский химик Ж. Ш. Мариньяк нашел в самарските еще один новый элемент. Он получил из самарскита две фракции, одна из которых давала точно такой же спектр, как у элемента, открытого Буабодраном. Так было подтверждено открытие самария. Другая же фракция, как показал спектральный анализ, содержала новый элемент. В честь одного из первых исследователей редких земель Юхана Гадолина этот элемент был назван гадолинием. Деципий же вскоре "закрыли": он оказался смесью самария с другими редкоземельными элементами, прежде всего с неодимом и празеодимом.
Элементарный самарий был получен в начале ХХ века, но еще несколько десятилетий не находил применения. Сегодня элемент (и его соединения) довольно важен для атомной энергетики: самарию свойственно большое поперечное сечение захвата тепловых нейтронов - около 6500 барн. Это больше, чем у бора и кадмия - традиционных материалов регулирующих стержней. Керамические материалы, в которые входят окись самария (порошок бледно-кремового цвета), стали использовать в качестве защитных материалов в реакторостроении.
В последние годы особое внимание ученых и практиков привлекло
интерметаллическое соединение самария с кобальтом SmCo5 . Из него делают необычайно сильные постоянные магниты.
Кроме того, самарий вводят в состав стекол, способных люминесцировать и поглощать инфрокрасные лучи.
Но не всегда самарий полезен. Физики считают, что из радиоактивных изотопов наибольшую опасность в качестве реакторного яда представляет ксенон-135, а из стабильных - изотоп самария с массовым числом 149. Сечение захвата тепловых нейтронов у самария-149 огромно - 66000 барн. Но в работающем реакторе происходит как бы самоочищение: при поглощении нейтрона самарий-149 превращается в самарий-150, который поглощает замедленные нейтроны намного хуже.
Для реактора на быстрых нейтронах самарий-149 не опасен: быстрые неитроны его ядрами не захватываются.
Природный самарий состоит из семи изотопов (массовые числа: 144, 147, 148, 149, 150, 152 - самый распространенный изотоп - и 154). Самарий-147 альфа-активен, период его полураспада около 100 миллиардов лет.
Но не только из-за самария-147 радиоактивен красивый минерал амарскит. В его состав наряду с редкими землями, кислородом, железом, танталом и ниобием входит уран...
ЕВРОПИЙ.
В 1886 году французский химик Демарсэ выделил из самариевой земли новый элемент, который, скорее всего, был не очень чистым европием. Но этот опыт воспроизвести не удалось. В том же году англичанин Уильямс Крукс обнаружил новую линию в спектре самарскита. С подобным же сообщением выступил через 6 лет Лекок де Буабодран. Но все данные о новом элементе были в какой-то мере шаткими.
Демарсе проявил характер. Он потратил на выделение нового элемента из самариевой земли несколько лет, и наконец в 1896 году ему удалось приготовить чистый препарат. Первоначально Демарсе обозначил открытый им элемент греческой заглавной буквой "сигма" .А в 1901 году после серии контрольных экспериментов этот элемент получил свое нынешнее название.
Металлический европий впервые был получен лишь в 1937 году.
Европий - последний редкоземельный элемент цериевой подгруппы. Он самый легкий из лантаноидов, его плотность всего 5,245 г/см3 . У европия же наибольшие из всех лантаноидов атомный радиус и атомный объем.
Так же, как и его соседи по таблице Менделеева, европий входит в число наиболее сильных поглотителей тепловых нейтронов. Отсюда его возможности в атомной технике и технике защиты от излучений. В качестве материала противонейтронной защиты элемент N63 интересен тем, что его природные изотопы 151 Eu и 153 Eu, поглощая нейтроны, превращаются в изотопы, у которых почти так же велико сечение захвата тепловых нейтронов.
Радиоактивный европий, полученный из атомных реакторов, использовали при лечении некоторых форм рака.
Важное значение приобрел европий как активатор люминофоров. Микропримесями европия активируют, в частности, окись иттрия Y2 O3 и ортованадат иттрия YVO4 , используемые для получения красного цвета на телевизионных экранах. Приобрели практическое значение и другие люминофоры, активированные европием.
Соединения европия (он проявляет валентности 2+ и 3+), как правило, белого цвета с розовато-оранжевым оттенком. Соединения европия с хлором и бромом светочувствительны.
ГАДОЛИНИЙ.