Реферат: Литьё цветных металлов в металлические формы - кокили

Закрытие и запирание кокилей, устанавливаемых на машинах, осуществляется пневматическим или гидравлическим приводом подвижной плиты машины.

Системы нагрева и охлаждения предназначены для поддержания заданного температурного режима кокиля. Применя­ют электрический и газовый обогрев. Первый используется для общего нагрева кокиля, второй более удобен для общего и местного нагрева. Конструкции охлаждаемых кокилей рассмот­рены выше.

Удаление отливки из кокиля осуществляется специальными механизмами. При раскрытии кокиля отливка должна оставаться в одной из его половин, желательно в подвижной, чтобы исполь­зовать ее движение для выталкивания отливки. Поэтому выпол­няют на одной стороне отливки меньшие, а на другой большие уклоны, специальные технологические приливы и предусматривают несимметричное расположение литниковой системы в кокиле (це­ликом в одной половине кокиля). При изготовлении крупных отли­вок должно быть обеспечено удаление отливки из обеих половин кокиля. Отливки из кокиля удаляются выталкивателями, которые располагают на неответственных поверхностях отливки или литниках равномерно по периметру отливки, чтобы не было пе­рекоса и заклинивания ее в кокиле. Выталкиватели возвращаются в исходное положение пружинами (небольшие кокили) или контр­толкателями.

Материалы для кокилей

В процессе эксплуатации в кокиле возникают значительные термические напряжения вследствие чередующихся резких нагре­вов при заливке и затвердевании отливки и охлаждений при рас­крытии кокиля и извлечении отливки, нанесении на рабочую по­верхность огнеупорного покрытия. Кроме знакопеременных терми­ческих напряжений под действием переменных температур в мате­риале кокиля могут протекать сложные структурные изменения, химические процессы. Поэтому материалы для кокиля, особенно для его частей, непосредственно соприкасающихся с расплавом, должны хорошо противостоять термической усталости, иметь высо­кие механические свойства и минимальные структурные превраще­ния при температурах эксплуатации, обладать повышенной ростоустойчивостью и окалиностойкостью, иметь минимальную диффу­зию отдельных элементов при циклическом воздействии темпера­тур, хорошо обрабатываться, быть недефицитными и недорогими. Производственный опыт показывает, что для рабочих стенок кокилей достаточно полно указанным требованиям отвечают при­веденные ниже материалы.

СЧ20, СЧ25 кокили для мелких и средних отливок из алюминиевых, магниевых, медных сплавов, чугуна; кокили с воздуш­ным и водовоздушным охлаждением
ВЧ42-12, ВЧ45-5 Кокили для мелких, средних и крупных отливок из чугунов: серого, высокопрочного, ковкого; кокили с воздушным и водовоздушным охлаждением
Стали 10, 20, СтЗ, стали 15Л-П, 15ХМЛ Кокили для мелких, средних, крупных и особо крупных отливок из чугуна, стали, алюминиевых, магниевых, медных сплавов
Медь и ее сплавы, легированные стали и сплавы с особыми свойствами Вставки для интенсивного охлаждения отдельных час­тей отливок; тонкостенные водоохлаждаемые кокили; массивные металлические стержни для отливок из раз­личных сплавов
АЛ9, АЛ11 Водоохлаждаемые кокили с анодированной поверх­ностью для мелких отливок из алюминиевых, медных сплавов, чугуна

Наиболее широко для изготовления кокилей применяют серый и высокопрочный чугуны марок СЧ20, СЧ25, ВЧ42-12, так как эти материалы в достаточной мере удовлетворяют основным требо­ваниям и сравнительно дешевы. Эти чугуны должны иметь ферритно-перлитную структуру. Графит в серых чугунах должен иметь форму мелких изолированных включений. В этих чугунах не допускается присутствие свободного цементита, так как при нагревах кокиля происходит распад цементита с изменением объема материала, в результате в кокиле возникают внутренние напряжения, способствующие короблению, образованию сетки разгара, снижению его стойкости. В состав таких чугунов для повышения их стойкости вводят до 1% никеля, меди, хрома, а со­держание вредных примесей серы и фосфора должно быть мини­мальным. Например, для изготовления кокилей с высокой тепло-нагружснностью рекомендуется [14] серый чугун следующего химического состава, мае. %: 3,0—3,2 С; 1,3—1,5 Si; 0,6—0,8 Mn; 0,7—0,9 Cu; 0,3—0,7 Ni; 0,08—0,1 Ti; до 0,12 S; до 0,1 Р.

Для изготовления кокилей используют низкоуглеродистые стали 10, 20, а также стали, легированные хромом и молибденом, например 15ХМЛ. Эти материалы обладают высокой пластич­ностью, поэтому хорошо сопротивляются растрескиванию при эксплуатации. Кокили для мелких отливок из чугуна и алюми­ниевых сплавов иногда изготовляют из алюминиевых сплавов АЛ9 и АЛ11. Такие кокили анодируют, в результате чего на их рабочей поверхности образуется тугоплавкая (температура плав­ления около 2273 К) износостойкая пленка окислов алюминия толщиной до 0,4 мм. Высокая теплопроводность алюминиевых стенок кокиля способствует быстрому отводу теплоты от отливки.

Таблица 2.1

Материалы для изготовления деталей кокилей

Детали кокиля Условия работы Материал
Стержни, штыри, обратные толкатели, тяги Соприкасаются с жидким металлом, работают на Сталь 45
Стержни, вставки, вытал­киватели с резкими перехо­дами в сечениях истирание Оформляют глубокие поло­сти отливок и находятся под действием высоких тем­ператур ЗОХГС, 35ХГСА, 35ХНМ, 4Х5МФС
Выталкиватели Испытывают ударные на­грузки У8А; У10А
Оси, валы, эксцентрики Работают на истирание Сталь 25*

* Подвергают цементации.

Эти кокили обычно делают водоохлаждаемыми. Медь также часто используют для изготовления рабочих стенок водоохлаждаемых кокилей. Из меди делают отдельные вставки, вкладыши в местах, где необходимо ускорять теплоотвод от отливки и тем самым управлять процессом ее затвердевания.

Стержни простой конфигурации изготовляют из конструкцион­ных углеродистых сталей, а сложной конфигурации — из легиро­ванных сталей, для прочих деталей — осей, валов, болтов и т. д.— используют конструкционные стали (табл. 2.1).

Изготовление кокилей

Кокили небольших размеров для мелких отливок из алюминиевых, магниевых, цинковых, оловянных сплавов изготовляют литыми из чугуна, а также часто из поковок обработкой резанием с электрофизической и электрохимической обра­боткой рабочих полостей. Более крупные кокили- выполняют литыми. При отливке рабочих стенок кокилей особое внимание обращают на то, чтобы заготовки не имели внутренних напряжений, что обеспечивается технологией литья, а также .снижением уровня остаточных напряжений соответствующей термической обра­боткой.

Желательно выполнять литую заготовку кокиля такой, чтобы не требовалось обработки резанием рабочих полостей, в крайнем случае производилась бы их зачистка. Это обеспечивает снижение стоимости кокиля и повышение стойкости рабочей поверхности к появлению сетки разгарных трещин при эксплуатации.

Однако решить эту задачу трудно, особенно если конфигурация рабочей полости сложная. Поэтому литые необработанные кокили применяют для отливок несложной конфигурации. Рабочую полость кокиля выполняют стержнями, кото­рые для получения чистой поверхности кокиля, без пригара, обязательно окраши­вают или натирают противопригарными пастами. Без окраски используют лишь стержни, получаемые по нагреваемой оснастке из смесей со связующим ПК-104, а также стержни из песков зернистости не выше 016, стержни из цирконовых песков.

Для получения литых кокилей из стали используют СО2 процесс, а также керамические формы, изготовляемые по постоянным моделям [11]. Последний способ позволяет получать рабочие полости кокилей сложной конфигурации без обработки резанием. Точность размеров рабочих полостей в этом случае дости­гает 12 — 14-го квалитетов по СТ СЭВ 145—75, а шероховатость поверхности

Rz = 40÷10 мкм по ГОСТ 2789—73. Использование керамических форм для изготовления рабочих стенок кокилей позволяет снизить объем обработки реза­нием на 50—60%.

Литые заготовки стальных кокилей после отливки подвергают термической обработке — нормализации. Термическую обработку стальных водоохлаждаемых кокилей проводят после приварки к ним кожухов и коробок для подачи жидкости, так как при сварке в конструкции неизбежно возникнут внутренние напряжения, которые могут привести к короблению кокиля при эксплуатации.

Для стабилизации размеров и формы стальные кокили перед окончательной обработкой резанием подвергают старению по режиму: нагрев до 773—873 К, выдержка 2 ч на каждые 25 мм толщины стенки, охлаждение с ночью до 473— 573 К и далее на воздухе. Используют также «тренировку» — циклическую тер­мическую обработку: в печь, нагретую до 1173 К, помещают кокиль и нагревают до 573 К, затем охлаждают обдувкой воздуха. Этот цикл повторяют 3—4 раза. Стареыие и циклическую термическую обработку по указанным режимам исполь­зуют также и для чугунных заготовок кокилей.

Стойкость кокилей и пути ее повышения

Стойкость кокилей измеряется числом отливок требуемого, качества, полученных в данном кокиле до выхода его из строя. Приблизительная стойкость кокилей приведена в табл. 2.2.

Увеличение стойкости кокиля при литье чугуна, стали, медных сплавов позволяет повысить эффективность производства отливок благодаря снижению затрат на изготовление кокиля, расширить область применения этого перспективного технологического про­цесса.

Таблица 2.2

Приблизительная стойкость кокилей

Заливаемый сплав Отливки

Материал

кокиля

Стойкость кокиля (число отливок)
Медные Мелкие Средние Чугун 1000—10000 1000—8000
Мелкие Средние Сталь 1 000— 1 500 500 - 3000
Алюминиевые, магниевые, цинковые Мелкие Средние Крупные Чугун Сотни тысяч Десятки тысяч Несколько тысяч

Основной причиной разрушения кокиля являются сложные термохимические процессы, вызываемые неравномерным цикличе­ским нагревом и охлаждением рабочей стенки кокиля во всех трех ее измерениях (по толщине, длине, ширине). Это приводит к появлению неоднородного, изменяющегося с изменением темпе­ратуры поля напряжений в стенке кокиля, вызывающего ее упру­гие и пластические деформации. Последние приводят к остаточным деформациям и напряжениям. Теоретически показано, что в по­верхностном слое кокиля нереализованная термическая деформа­ция обычно в 2 раза превосходит деформацию, соответствующую пределу текучести материалов при определенной температуре. Поэтому в каждом цикле нагружения (заливка — выбивка) де­формация сжатия сменяется деформацией растяжения, что приво­дит к термической усталости материала кокиля. Термические напряжения возникают также вследствие структурных превраще­ний и роста зерна материала кокиля, протекающих тем интенсив­нее, чем выше температура его нагрева.

Способность кокиля выдерживать термические напряжения за­висит от механических свойств его материала при температурах работы кокиля. Эти свойства резко снижаются при нагреве. Напри- : мер, предел текучести стали 15 при нагреве до 900 К уменьшается в 3 раза.

Уровень возникающих в кокиле напряжений зависит также от конструкции кокиля — толщины его стенки, конструкции ребер жесткости и т. д. Например, тонкие ребра жесткости большой высоты приводят к появлению трещин на рабочей поверхности кокиля, а низкие ребра могут не обеспечить жесткость кокиля и привести к короблению.

Стойкость кокилей обеспечивается конструктивными, техноло­гическими и эксплуатационными методами.

Конструктивные методы основаны на правильном вы­боре материалов для кокилей в зависимости от преобладающего вида разрушения, разработки рациональной конструкции кокиля.

Термические напряжения, приводящие к снижению стойкости кокиля, являются следствием нереализованной термической де­формации: менее нагретые части кокиля (слои рабочей стенки, прилегающие к внешней нерабочей поверхности, ребра жесткости) препятствуют расширению нагревающейся металлом отливки час­ти кокиля. Уменьшить напряжения возможно, если термическая деформация нагретой части происходит беспрепятственно. Этого можно достичь, если расчленить рабочую стенку кокиля на отдель­ные элементы (вставки) в продольном (рис. 2.10, 6) или попереч­ном (рис. 2.10, а) направлениях. Тогда вследствие зазоров между элементами кокиля каждый из них при нагреве расширяется свободно.

Для повышения стойкости кокилей используют сменные встав­ки 1, оформляющие рабочую полость кокиля (рис. 2.10, в). Благо­даря зазорам между корпусом 2 и вставкой 1 терм?

К-во Просмотров: 894
Бесплатно скачать Реферат: Литьё цветных металлов в металлические формы - кокили