Реферат: Логика неопределенности и неопределенности во времени

Обсуждаемое сходство можно подкрепить психологически, сделав похожими начертания сходных предикатов. Удобнее вместо Q использовать, допустим, Р*. Важно подчеркнуть, что суть идеи сходства не в этом. Мы называем n - местные атомарные предикаты Р(х 1 , ..., x n ) и Q (х 1 , ..., x n ) сходными в теории Т, если любая аксиома Т, содержащая эти предикаты или один из них, остается аксиомой данной теории Т после одновременной замены каждого вхождения Р(х 1 , ..., x n ) на Q (х 1 , ..., x n ) и каждого вхождения Q (х 1 , ..., x n ) на Р(х 1 , ..., x n ). Аналогичным образом определяется сходство в теории Т функциональных символов.

Перейдем к более детальным построениям. Пусть Т – аксиоматическая теория в языке L классического исчисления предикатов первого порядка. Сопоставим каждому n -местному атомарному предикатному символу Р(х 1 , ..., x n ) языка L n -местный атомарный предикатный символ Р*(х 1 , ..., x n ), а каждому n -местному функциональному символу t (х 1 , ..., x n ) – n-местный функциональный символ t *(х 1 , ..., x n ). Индивидные константы (если они вообще имеются) оставим без изменений [1] . Получим язык L*. Теперь заменим в аксиомах теории Т каждое вхождение предикатных и функциональных символов на соответствующие символы со звездочкой. Результат описанной замены для аксиомы А обозначим через А*. В итоге получим теорию Т* в языке L*, содержащую в качестве аксиом только формулы вида А*.

Объединим полученные теории в одну. Получим теорию Т E Т* в языке L E L *. Теория Т E Т* вряд ли может кого-то заинтересовать. Просто она содержит два параллельных ряда аксиом, отличающихся лишь наличием или отсутствием звездочек в их формулировках. Однако понятие формулы претерпело существенное изменение. Формулами теории Т E Т* отныне являются не только формулы языка L и формулы языка L * по отдельности, но и смешанные формулы, содержащие как символы без звездочек, так и символы со звездочками. Пусть А – какая-либо формула языка L E L *. Через А* обозначим результат одновременной замены в А каждого предикатного или функционального символа без звездочки на соответствующий символ со звездочкой, а каждого предикатного или функционального символа со звездочкой на соответствующий символ без звездочки .

Так определенная операция * на формулах обладает следующим очевидным свойством.

Предложение 1 . Любая формула А графически совпадает с А**, но ни одна формула А не совпадает с А*.

По аналогии с атомарными формулами, произвольные формулы А и А* также будем называть сходными в теории Т E Т*.

Положим L н = L E L * E {н}, где “н” – символ новой унарной логической связки.

Добавим к Т E Т* важное определение. Точнее, схему определений. Для любой формулы А языка L н аксиомой является следующая формула:

нА « ((А & O A *) U ( O A & A *)).

Содержательный смысл данного определения должен быть ясен из вышесказанного. В частности, если А – формула языка L E L * (это означает, что в А нет вхождений оператора “н”), то А неопределенна тогда и только тогда, когда она выполнена в модели теории Т E Т*, а сходная с ней формула А* не выполнена в той же модели, или, наоборот, А не выполнена, но А* выполнена.

Теорию Т E Т* с присоединенной схемой определений

нА « ((А & O A *) U ( O A & A *)) в качестве новой аксиомной схемы назовем минимальной теорией с неопределенностью Тн в языке L н. Короче, минимальная Тн = Т E Т* E {нА « ((А & O A *) U ( O A & A *))}.

Интересно обсудить вопрос: относится ли предложенная конструкция к чистой логике, или она является частью прикладных построений? Уточним постановку вопроса. Пусть исходная теория Т – это просто одна из аксиоматических формулировок чистого исчисления предикатов первого порядка без равенства. Нет никаких причин сомневаться, что Т* тогда тоже относится к чистой логике. Но как быть в этом случае с минимальной Тн? Является ли Тн прикладной теорией (вроде арифметики или теории множеств), или ее все еще можно считать принадлежащей к чистой логике? Представляется убедительным следующий аргумент. Аксиомы прикладных теорий истинны не во всех универсумах, тогда как логические аксиомы верны при любых интерпретациях во всех непустых универсумах. Аксиомную схему нА « ((А & O A *) U ( O A & A *)) невозможно провалить по той же самой причине, по какой нельзя опровергнуть, например, сокращение (А & В) « O (А ® O В), добавленное к исчислению, сформулированному в языке { O , ® }. Так и в рассматриваемом случае. Формула нА « ((А & O A *) U ( O A & A *)) по сути является сокращением, позволяющем в более компактном виде представлять некоторые формулы. Можно, конечно, принять закон O ((А & В) « O (А ® O В) ), но это будет какая-то другая, неклассическая логика. Также можно придать унарной логической связке “н” какой-то другой смысл. Но это тоже будет уже другая логика.

Придадим сказанному формальный смысл. Пусть <U, F> – структура для языка L E L *. Поскольку язык L E L * является языком исчисления предикатов первого порядка, функция интерпретации F предикатных, функциональных и индивидных констант из L E L * на непустом универсуме U стандартна. Все, что требуется для того, чтобы сделать <U, F> структурой для языка L н, – это определить условие выполнимости для формул вида нА. Это условие очевидно: формула нА выполнена в структуре <U, F> при оценке v тогда и только тогда, когда в <U, F> при оценке v выполнена формула ((А & O A *) U ( O A & A *)). Тогда верно следующее утверждение (в котором знак логического закона “ u = ” имеет обычное классическое значение).

Предложение 2 . u = (нА « ((А & O A *) ? ( O A & A *))).

Однако чисто логическая теория Тн моментально превратится в прикладную, как только мы примем аксиому о том, что конкретная выполнимая формула А является неопределенной. Аксиома нА для такой формулы может выполняться в одних интерпретациях и не выполняться в других, как и положено аксиомам прикладных теорий. Но в этом случае теория Тн перестанет быть минимальной.

Предложение 3 . Для любой теории Т теория Т E Т* является ее консервативным расширением, а минимальная теория Тн является консервативным расширением Т E Т* (и, значит, также Т).

Как и всякую теорию, минимальную теорию Тн можно расширять, причем не обязательно формулами, содержащими оператор “н”. В качестве новой аксиомы к Тн разрешается добавлять любую формулу языка L н. Разумеется, в результате расширение уже не обязано быть консервативным. Тем не менее, каковы бы ни были теории с неопределенностью Тн, для них верны все стандартные метатеоремы о первопорядковых теориях классической логики. Иными словами, выполняется своего рода принцип переноса . Данный факт имеет место потому, что по сути дела теории Тн не выводят нас за рамки классической логики. В частности, каждую формулу теории Тн, содержащую операто?

К-во Просмотров: 298
Бесплатно скачать Реферат: Логика неопределенности и неопределенности во времени