Реферат: Магнитные материалы

Концентрация двухвалентных ионов Fe2+ зависит от состава феррита и режима его обжига. Для снижения концентрации Fe2+ вводят различные добавки .

Процессы поляризации ферритов и диэлектрические потери определяются дрейфом слабосвязанных электронов под действием электрического поля. С ростом частоты поля уменьшается число электронов, которые участвует в дрейфе, и уменьшается расстояние, на которое они смещаются, и соответственно снижается поляризованность. Например на частотах ниже 1000 Гц у марганец-цинковых ферритов величина e~ 100000, а с увеличением частоты e резко падает до значения порядка 100. Частотные характеристики диэлектрических потерь имеют максимум.

Магнитомягкие ферриты применяются в качестве сердечников контурных катушек постоянной и переменной индуктивности, сердечников импульсных трансформаторов, трансформаторов развертки телевизоров, магнитных модуляторов и усилителей. Из них изготавливают стержневые магнитные антенны, индуктивные линии задержки и др. Монокристаллы магнитомягких ферритов применяются при изготовлении магнитных головок записи и воспроизведения сигнала звукового и видеодиапазонов в магнитофонах, т.к. они обладают высоким удельным сопротивлением (что важно для уменьшения потерь) и большей твердостью по сравнению с металлическими.

Магнитодиэлектрики - это композиционные магнитомягкие материалы, состоящие из ферромагнетика и диэлектрика, применяемого в качестве связующего электроизоляционного материала. Основа должна обладать высокими магнитными свойствами, а связка - способностью образовывать между зернами сплошную электроизоляционную пленку одинаковой толщины. В качестве основы применяют карбонильное железо, альсифер, молибденовый пермаллой. Изолирующей связкой служат фенолформоальдегидные смолы, полистирол, стекло и др.

Суммарные потери мощности в магнитодиэлектрике определяются потерями на вихревые токи, последействие, гистерезис и диэлектрическими потерями. С уменьшением размера частиц ферромагнетика потери снижаются, особенно обусловленные вихревыми токами.

Магнитная проницаемость магнитодиэлектриков (mн = 10 - 250) ниже магнитной проницаемости монолитных ферромагнетиков. Это связанно с тем, что изолированные друг от друга ферромагнитные частицы создают внутреннее поле, направленное навстречу внешнему, и слабо выражен механизм намагничивания за счет смещения доменных границ, определяющий значение mн .

Из-за сильного влияния размагничивающего фактора магнитодиэлектрики имеют близкую к линейной зависимость индукции от напряженности магнитного поля и характеризуются незначительными потерями на гистерезис.

Достоинства магнитодиэлектриков: малые удельные потери энергии, слабая зависимость параметров от температуры, времени и напряженности магнитного поля, постоянство магнитной проницаемости в диапазоне частот, а недостаток - сравнительно малая начальная магнитная проницаемость.

Прессованные сердечники из магнитодиэлектриков применяются в катушках индуктивности контуров радиоприемных устройств, генераторов, фильтров и т.д.

Сердечники на основе карбонильного железа обладают высокой стабильностью, малыми потерями, положительным температурным коэффициентом магнитной проницаемости и могут использоваться в широком диапазоне частот. Карбонильное железо получается посредством термического разложения пентакарбоната железа в виде тонкого порошка, что удобно для изготовления прессованных магнитных сердечников. В карбонильном железе отсутствует кремний, фосфор, сера, но содержится углерод.

Промышленность выпускает два класса карбонильного железа: Р (марки Р-10, Р-20, Р-100) - для радиоаппаратуры и Пс - для проводной связи. Цифры указывают максимальную рабочую частоту в МГц.

Альсифер обладает невысокой стоимостью. Его температурный коэффициент магнитной проницаемости зависит от содержания алюминия и кремния и может быть положительным, отрицательным или равным нулю.

4. Магнитные материалы специального назначения

К магнитным материалам специального назначения относят магнитные материалы с прямоугольной петлей гистерезиса, СВЧ ферриты, магнитострикционные материалы.

Магнитные материалы с прямоугольной петлей гистерезиса (ППГ) находят широкое применение в устройствах автоматики, аппаратуре связи. Сердечники из материала с ППГ имеют два устойчивых магнитных состояния, которые соответствуют различным направлениям магнитной индукции. Это свойство используется для хранения и переработки двоичной информации.

Материалы с ППГ характеризуются коэффициентом прямоугольности kпу петли гистерезиса.

kпу = Br /Bmax .

Большим значением kпу обладают железоникелевые и железокобальтовые сплавы, легированные медью и некоторыми другими металлами. Эти сплавы обладают кристаллографической или магнитной текстурой. Наиболее высокую прямоугольность (до 0,98) имеют железоникелькобальтовые сердечники из лент микронной толщины.

Более широко распространены ферриты с ППГ, сердечники из которых более технологичны и дешевле. Прямоугольность петли гистерезиса достигается выбором определенного химического состава и условиями спекания феррита. Для сердечников с ППГ чаще применяются магний-марганцевые и литиевые ферриты.

Ферромагниты для устройств СВЧ используются в диапазоне длин волн от 1м до 1 мм. Электромагнитная энергия на таких частотах передается по волноводам, коаксиальным и полосковым линиям передачи. Ферритовый сердечник - вкладыш, помещенный внутрь волновода, изменяет структуру поля и скорость распространения волны. На этих частотах в ферритах используется магнитооптический эффект Фарадея, эффект ферромагнитного резонанса и зависимость магнитной проницаемости от величины внешнего поля.

Магнитооптический эффект Фарадея заключается в повороте плоскости поляризации высокочастотных колебаний в феррите за счет внешнего поля. Это позволяет изменять угол поворота плоскости поляризации и направлять энергию в разные каналы.

Ферромагнитный резонанс наблюдается при совпадении частоты внешнего поля с собственно частотой прецессии электронов, которой можно управлять с помощью постоянного подмагничивающего поля. При резонансе, волна распространяющаяся в прямом направлении, проходит без затухания, а в обратном - с затуханием. В результате получается высокочастотный вентиль. Это явление используется в антенных переключателях, в фазовращателях, модуляторах и т.д.

Для каждого диапазона длин волн используется определенная разновидность феррита. Например, для диапазона длин волн 0,8 - 2 см используются некоторые никель-цинковые ферриты, для диапазона 5 см и более используют ферриты с добавками хрома (феррохроматы) или алюминия (ферроалюмиты); феррогранат используется в диапазоне волн несколько десятков сантиметров.

Ферриты СВЧ маркируются буквами СЧ, впереди которых стоит цифра, указывающая длину волны в см. Цифра после букв СЧ указывает различие по свойствам.

В магнитострикционных материалах используется явление магнитострикции и магнитоупругий эффект - изменение магнитных свойств материала под влиянием механических воздействий. К магнитострикционным материалам относится никель, пермендюр (сплавы FeCo), альферы (сплавы FeAl), никелевый и никель-кобальтовые ферриты и др. Магнитострикционные ферриты имеют малые потери на вихревые токи по сравнению с никелем и металлическими сплавами, не подвержены действию химических агрессивных сред.

С помощью керамической технологии можно изготовить преобразователи любых форм и размеров. Магнитострикционные материалы применяются для изготовления сердечников электромеханических преобразователей для электроакустической и ультразвуковой технике, сердечника электромеханических и магнитострикционных фильтров, резонаторов и линий задержек.


5. Магнитотвердые материалы

Магнитотвердые материалы обладают высокой коэрцитивной силой и большой площадью петли гистерезиса.

Магнитотвердые материалы по способу изготовления подразделяются на следующие группы:

К-во Просмотров: 1352
Бесплатно скачать Реферат: Магнитные материалы