Реферат: Магнитные свойства вещества 2
Значения cм парамагнитных веществ малы и не очень удобны при объяснении строения соединений. Поэтому чаще парамагнитную восприимчивость характеризуют эффективным магнитным моментом meff , который определяется уравнением.
Тогда при температуре 298 К "чисто спиновое" значение для одного неспаренного электрона ms = = 1,73 магнетона Бора (mБ), для двух - 3,46 mБ и т.д. (табл. 2). Вклад других факторов, в первую очередь спин-орбитального взаимодействия, отражается на величине g-фактора и приводит к тому, что meff отличается от ms.
Знание количества неспаренных электронов помогает понять некоторые особенности размещения элементов в Периодической системе Д.И. Менделеева. Так, электронные оболочки, заполненные полностью либо точно наполовину, обладают повышенной устойчивостью. С возрастанием относительной атомной массы мы впервые сталкиваемся с этим у хрома. Сравним электронные конфигурации в основном состоянии: Sc 3d 14s 2, Ti 3d 24s 2, V 3d 34s 2, следующий хром не 3d 44s 2, а 3d 54s 1, более устойчивая полузаполненная оболочка подчеркнута:
А установлено это именно по измерениям магнитной восприимчивости, когда было обнаружено, что атом хрома содержит шесть неспаренных электронов, а не четыре. Правда, для этого пришлось выполнить довольно тонкие измерения на изолированных атомах в газовой фазе, так как магнитные свойства проводников не связаны с числом неспаренных электронов (потому что валентные электроны в металлах не привязаны к определенным атомам, а хаотически движутся по всему кристаллу), а определяются квантовыми законами (так называемые диамагнетизм Ферми и парамагнетизм Ландау [2, 3]). В то же время, например, порядок заполнения 5d- и 4f-орбиталей в ряду лантанидов не изменяет числа неспаренных электронов, поэтому правильные электронные конфигурации были установлены только в 60-е годы путем квантовомеханических расчетов (по магнитным измерениям нельзя различить конфигурации 5d 1 и 4f 1). Тем не менее магнетохимические исследования позволяют установить электронную конфигурацию, как, наверное, уже заметил внимательный читатель, соединений переходных металлов, которые составляют основу химии координационных (комплексных) соединений.
Координационные соединения образуются, как правило, за счет донорно-акцепторной связи, то есть неподеленные пары электронов лигандов занимают вакантные места на орбиталях центрального атома. При этом количество неспаренных электронов и магнитный момент ионов-комплексообразователей остается таким же, как и у свободного иона в газовой фазе. Это справедливо для аквакомплексов переходных металлов, например железа(II) (рис. 3). Однако существуют также магнитно-аномальные комплексы, магнитный момент которых ниже, чем у газообразного иона. Их электронную структуру можно объяснить в рамках метода валентных связей следующим образом. Очень многие комплексные соединения имеют координационное число шесть. Шесть лигандов симметрично расположены в вершинах октаэдра. Для того чтобы получить шесть гибридных орбиталей, в их образовании должны принять участие шесть валентных орбиталей центрального атома: такое перераспределение электронной плотности называется sp3d 2-гибридизацией (ср. с sp3-гибридизацией атома углерода в алканах, где четыре связи направлены к вершинам тетраэдра). Обратите внимание, что в образовании гибридных орбиталей принимают участие d-орбитали с таким же порядковым номером, что и s, p-орбитали. Это объясняется тем, что расположенные ниже по энергии внутренние d-орбитали заняты собственными электронами иона металла. Для того чтобы занять расположенные ниже по энергии орбитали, лиганды должны вынудить собственные электроны иона металла спариться и освободить внутренние d-орбитали для так называемой d 2sp 3-гибридизации. Это могут сделать только лиганды сильного поля, образующие прочные связи с ионом металла, например цианид-ионы в комплексном гексацианоферрате(II) (см. рис. 3).
Соответственно первый тип комплексов, обладающий высоким магнитным моментом, называется внешнеорбитальным комплексом, а второй тип с пониженным магнитным моментом - внутриорбитальным комплексом. Это различие, приводящее к изменению числа неспаренных электронов в комплексе, приводит к изменению магнитных моментов внешне- и внутриорбитальных комплексов соответственно и, вызвано энергетической неравноценностью соответствующих d-орбиталей (обычно ее называют энергией расщепления в поле лигандов и обозначают D или 10Dq [6]).
По способности образовывать внутриорбитальные комплексы (по величине D) все лиганды можно расположить в ряд, который называется спектрохимическим рядом лигандов:
CN- > NO2- > SO32- > NH3 > NCS- > H2O >
> OH- > F- > Cl- > Br- > I-
Он получил свое название, потому что окраска комплекса зависит от положения лиганда в этом ряду, и в этом проявляется связь оптических и магнитных свойств координационных соединений [6].
Таким образом, измеряя магнитную восприимчивость, можно легко судить о степени окисления и геометрии первой координационной сферы в комплексе. Данные по магнитной восприимчивости ряда ионов переходных металлов и лантанидов приведены в табл. 2. Видно, что магнитные свойства 3d-ионов в большинстве случаев хорошо соответствуют чисто спиновым значениям ms , а для объяснения магнитных свойств лантанидов требуется уже более сложная модель с привлечением упомянутого выше квантового числа J.
Известно, что большинство важных на практике химических реакций протекают в растворах, к ним относятся также и реакции комплексообразования, поэтому в следующем разделе рассмотрим магнитные свойства растворов, в которых соединения переходных металлов реализуются в виде комплексов.
МАГНИТНАЯ ВОСПРИИМЧИВОСТЬ РАСТВОРОВ
При переходе от твердого тела к раствору следует учитывать магнитные восприимчивости растворителя и всех растворенных веществ. При этом простейшим способом такого учета будет суммирование вкладов всех компонентов раствора по правилу аддитивности. Принцип аддитивности - один из основополагающих принципов в обработке экспериментальных данных. Временами он даже подводит экспериментаторов, потому что человеческому разуму трудно представить себе другой механизм взаимодействия разнообразных факторов, помимо простого их сложения. Любые отклонения от него чаще связывают с тем, что сам принцип аддитивности выполняется, а компоненты раствора изменяют свои свойства. Поэтому принимается, что магнитная восприимчивость раствора равна сумме магнитных восприимчивостей отдельных компонентов с учетом концентрации где ci - концентрация (в моль/л), cмi - молярная магнитная восприимчивость i-го компонента раствора, коэффициент 1/1000 используется для перехода к молярной концентрации. При этом суммирование производится по всем растворенным веществам и растворителю [1]. Можно заметить, что вклады парамагнитных и диамагнитных веществ в измеряемую магнитную восприимчивость противоположны по знаку и их можно разделить
cv(изм) = cv(пара) - cv(диа).
При исследовании магнитных свойств одного и того же вещества в разных растворителях (табл. 3) видно, что они могут заметно зависеть от природы растворителя. Это можно объяснить вхождением молекул растворителя в первую координационную сферу и изменением соответственно электронного строения комплекса, энергий d-орбиталей (D) и других свойств сольватокомплекса. Таким образом, магнетохимия позволяет изучать и сольватацию, то есть взаимодействие растворяемого вещества с растворителем.
В растворах определение cм и meff координационных соединений позволяет, как это видно из изложенного выше теоретического материала, определить ряд структурных параметров (l, S, D), что делает магнетохимические исследования весьма ценными. Разные комплексы одного и того же иона металла могут заметно отличаться по величине эффективного магнитного момента. На примере меди(II) видно, что при комплексообразовании эффективный магнитный момент увеличивается, а когда образуется димерный комплекс - уменьшается вследствие антиферромагнитного взаимодействия неспаренных электронов ионов меди(II). Магнитные свойства комплексных соединений меди(II) приведены ниже. (При записи формул использованы сокращенные обозначения лигандов, принятые в координационной химии: acac - ацетилацетон CH3COCH2COCH3 , H4Tart - винная кислота HOOC(CHOH)2COOH.)
Несколько слов о "магнитной" воде, точнее, о водных растворах (поскольку даже в дистиллированной воде содержатся примеси, например растворенный кислород, а он парамагнитен). Эта тема, конечно, требует отдельного рассмотрения, мы затронем ее лишь в связи с магнетохимией. Если магнитное поле влияет на свойства раствора, а многочисленные экспериментальные факты (измерения плотности, вязкости, электропроводности, концентрации протонов, магнитной восприимчивости) свидетельствуют, что это так [7], то следует признать, что энергия взаимодействий отдельных компонентов раствора и ансамбля молекул воды достаточно высока, то есть сопоставима или превышает энергию теплового движения частиц в растворе, которое усредняет всякое воздействие на раствор. Напомним, что энергия магнитного взаимодействия одной частицы (молекулы) мала по сравнению с энергией теплового движения. Такое взаимодействие возможно, если принять, что в воде и водных растворах за счет кооперативного характера водородных связей реализуются большие льдоподобные структурные ансамбли молекул воды, которые могут упрочняться или разрушаться под воздействием растворенных веществ [7]. Энергия образования таких "ансамблей", по-видимому, сопоставима с энергией теплового движения и под магнитным воздействием раствор может запомнить его и приобрести новые свойства, но броуновское движение или повышение температуры ликвидирует эту "память" в течение некоторого времени.
Обратите внимание, что, точно подбирая концентрации парамагнитных веществ в диамагнитном растворителе, можно создать немагнитную жидкость, то есть такую, средняя магнитная восприимчивость которой равна нулю или в которой магнитные поля распространяются точно так же, как и в вакууме. Это интересное свойство пока не нашло применения в технике.