Реферат: Магнитные свойства вещества

К диамагнетикам относят вещества, у которых магнитная восприимчивость отрицательна и не зависит от напряженности внешнего магнитного поля. К диамагнетикам относятся инертные газы, водород, азот, многие жидкости (вода, нефть и ее производные), ряд металлов (медь, серебро, золото, цинк, ртуть, галлий и др.), большинство полупроводников (кремний, германий, соединения АЗ В5 , А2 В6 ) и органических соединений, щелочно-галоидные кристаллы, неорганические стекла и др. Диамагнетиками являются все вещества с ковалентной химической связью и вещества в сверхпроводящем состоянии.

К парамагнетикам относят вещества с положительной магнитной восприимчивостью, не зависящей от напряженности внешнего магнитного поля. К числу парамагнетиков относят кислород, окись азота, щелочные и щелочноземельные металлы, некоторые переходные металлы, соли железа, кобальта, никеля и редкоземельных элементов.

К ферромагнетикам относят вещества с большой положительной магнитной восприимчивостью (до 106 ), которая сильно зависит от напряженности магнитного поля и температуры.

Антиферромагнетиками являются вещества, в которых ниже некоторой температуры спонтанно возникает антипараллельная ориентация элементарных магнитных моментов одинаковых атомов или ионов кристаллической решетки. При нагревании антиферромагнетик испытывает фазовый переход в парамагнитное состояние. Антиферромагнетизм обнаружен у хрома, марганца и ряда редкоземельных элементов (Се, Nd, Sm, Тm и др.). Типичными антиферромагнетиками являются простейшие химические соединения на основе металлов переходной группы типа окислов, галогенидов, сульфидов, карбонатов и т.п.

К ферримагнетикам относят вещества, магнитные свойства которых обусловлены нескомпенсированным антиферромагнетизмом. Подобно ферромагнетикам они обладают высокой магнитной восприимчивостью, которая существенно зависит от напряженности магнитного поля и температуры. Наряду с этим ферримагнетики характеризуются и рядом существенных отличий от ферромагнитных материалов.

Свойствами ферримагнетиков обладают некоторые упорядоченные металлические сплавы, но, главным образом,- различные оксидные соединения, среди которых наибольший практический интерес представляют ферриты.

Классификация магнитных материалов

Применяемые в электронной технике магнитные материалы подразделяют на две основные группы: магнитотвердые и магнитомягкие . В отдельную группу выделяют материалы специального назначения .

К магнитотвердым относят материалы с большой коэрцитивной силой Нс . Они перемагничиваются лишь в очень сильных магнитных полях и служат для изготовления постоянных магнитов.

К магнитомягким относят материалы с малой коэрцитивной силой и высокой магнитной проницаемостью. Они обладают способностью намагничиваться до насыщения в слабых магнитных полях, характеризуются узкой петлей гистерезиса и малыми потерями на перемагничивание. Магнитомягкие материалы используются в основном в качестве различных магнитопроводов: сердечников дросселей, трансформаторов, электромагнитов, магнитных систем электроизмерительных приборов и т. п.

Условно магнитомягкими считают материалы, у которых Нс < 800 А/м, а магнитотвердыми - с Нс > 4 кА/м. Необходимо, однако, отметить, что у лучших магнитомягких материалов коэрцитивная сила может составлять менее 1 А/м, а лучших магнитотвердых материалах ее значение превышает 500 кА/м. По масштабам применения в электронной технике среди материалов специального назначения следует выделить материалы с прямоугольной петлей гистерезиса (ППГ), ферриты для устройств сверхвысокочастотного диапазона и магнитострикционные материалы.

Внутри каждой группы деление магнитных материалов по родам и видам отражает различия в их строении и химическом составе, учитывает технологические особенности и некоторые специфические свойства.

Свойства магнитных материалов определяются формой кривой намагничивания и петли гистерезиса. Магнитомягкие материалы применяются для получения больших значений магнитного потока. Величина магнитного потока ограничена магнитным насыщением материала, а потому основным требованием к магнитным материалам сильноточной электротехники и электроники является высокая индукция насыщения. Свойства магнитных материалов зависят от их химического состава, от чистоты используемого исходного сырья и технологии производства. В зависимости от исходного сырья и технологии производства магнитомягкие материалы делятся на три группы: монолитные металлические материалы, порошковые металлические материалы (магнитодиэлектрические) и оксидные магнитные материалы, кратко называемые ферритами.

Основные требования к материалам

Помимо высокой магнитной проницаемости и малой коэрцитивной силы магнитомягкие материалы должны обладать большой индукцией насыщения, т.е. пропускать максимальный магнитный поток через заданную площадь поперечного сечения магнитопровода. Выполнение этого требования позволяет уменьшить габаритные размеры и массу магнитной системы.

Магнитный материал, используемый в переменных полях, должен иметь, возможно, меньшие потери на перемагничивание, которые складываются в основном из потерь на гистерезис и вихревые токи.

Для уменьшения потерь на вихревые токи в трансформаторах выбирают магнитомягкие материалы с повышенным удельным сопротивлением. Обычно магнитопроводы собирают из отдельных изолированных друг от друга тонких листов. Широкое применение получили ленточные сердечники, навиваемые из тонкой ленты с межвитковой изоляцией из диэлектрического лака. К листовым и ленточным материалам предъявляется требование высокой пластичности, благодаря которой облегчается процесс изготовления изделий из них.

Важным требованием к магнитомягким материалам является обеспечение стабильности их свойств, как во времени, так и по отношению к внешним воздействиям, таким, как температура и механические напряжения. Из всех магнитных характеристик наибольшим изменениям в процессе эксплуатации материала подвержены магнитная проницаемость (особенно в слабых полях) и коэрцитивная сила.

Ферромагнетики.

Разделение веществ на диа-, пара- и ферромагнетики носит в значительной степени условный характер, т.к. первые два вида веществ отличаются по магнитным свойствам от вакуума менее чем на 0,05%. На практике все вещества обычно разделяют на ферромагнитные (ферромагнетики) и неферромагнитные, для которых относительная магнитная проницаемость m может быть принятой равной 1,0.

К ферромагнетикам относятся железо, кобальт, никель и сплавы на их основе. Они имеют магнитную проницаемость, превышающую проницаемость вакуума в несколько тысяч раз. Поэтому все электротехнические устройства, использующие магнитные поля для преобразования энергии, обязательно имеют конструктивные элементы, изготовленные из ферромагнитного материала и предназначенные для проведения магнитного потока . Такие элементы называются магнитопроводы .

Кроме высокой магнитной проницаемости ферромагнетики обладают сильно выраженной нелинейной зависимостью индукции B от напряженности магнитного поля H , а при перемагничивании связь между B и H становится неоднозначной. Функции B (H ) имеют особое значение, т.к. только с их помощью можно исследовать электромагнитные процессы в цепях, содержащих элементы, в которых магнитный поток проходит в ферромагнитной среде. Эти функции бывают двух видов: кривые намагничивания и петли гистерезиса .

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения (рис. 1).

Если в процессе намагничивания довести напряженность поля до некоторого значения, а затем начать уменьшать, то уменьшение индукции будет происходить медленнее, чем при намагничивании и новая кривая будет отличаться от первоначальной. Кривая изменения индукции при увеличении напряженности поля для предварительно полностью размагниченного вещества называется начальной кривой намагничивания . На рис. 1 она показана утолщенной линией.

После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B =f (H ) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса . Гистерезисом называют отставание изменения индукции от напряженности магнитного поля . Явление гистерезиса характерно вообще для всех процессов, в которых наблюдается зависимость какой-либо величины от значения другой не только в текущем, но и в предыдущем состоянии, т.е. B 2 =f (H 2 , H 1 ) - где H 2 и H 1 - соответственно текущее и предыдущее значения напряженности.

Петли гистерезиса можно получить при различных значениях максимальной напряженности внешнего поля H m (рис. 2). Геометрическое место точек вершин симметричных циклов гистерезиса называется основной кривой намагничивания . Основная кривая намагничивания практически совпадает с начальной кривой.

Симметричная петля гистерезиса, полученная при максимальной напряженности поля H m (рис. 2), соответствующей насыщению ферромагнетика , называется предельным циклом .

Для предельного цикла устанавливают также значения индукции B r при H = 0, которое называется остаточной индукцией , и значение H c при B = 0, называемое коэрцитивной силой . Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса (кривая 1 рис. 3) называются магнитнотвердыми . Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис. 3) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 883
Бесплатно скачать Реферат: Магнитные свойства вещества