Реферат: Мартенситное превращение

Атомы растворенного в мартенсите углерода размещаются в октаэдрических порах тетрагональных кристаллов.

Согласно современным взглядам об электронном строении кристаллической решетки мартенсита, находящийся в октапоре атом углерода двумя из четырех своих валентных электронов образует ковалентные связи с двумя ближайшими атомами железа. Остальные же два валентных электрона переходят в электронный газ, образуя металлическую связь между атомами решетки.

Образующиеся в мартенсите трехцентровые ковалентные связи Fe-C-Fe почти на порядок сильнее металлических. К тому же они являются очень жесткими связями, допускающими лишь небольшие упругие деформации. превышение которых влечет полное скачкообразное исчезновение взаимодействия. Эти особенности межатомного взаимодействия в мартенсите сочетающие металлическую и ковалентную связи в его кристаллический решетке, являются основной причиной, предопределяющей его очень высокую твердость и хрупкость.

Имеются и другие факторы, которые вносят важный вклад в формирование вышеупомянутой специфики свойств мартенсита, в частности высокий уровень остаточных внутренних напряжений и большая плотность дислокаций.

В заключение напомним, что образование пересыщенного твердый раствор углерода в α-Fe происходит и при бейнитном превращении аустенита начиная с выступа С-крипых. Но в бейните в связи с образованием карбидной фазы не весь углерод оказывается растворенным в α-Fe. В связи с этим превращение в интервале температур Мн - Мк. когда образуется только одна фаза, содержащая весь растворенный в аустените углерод, является истинно мартенситным.

аустенит мартенситный сталь безуглеродистый

3. Влияние легирующих элементов на мартенситное превращение

При нагреве под закалку большинство легирующих элементов растворяются в аустените. Карбиды TiC, NbC, ZrC [частично (Fе, V)з С] не растворяются в аустените, даже когда их количество в стали мало. Эти карбиды тормозят рост аустенитного зерна при нагреве и обеспечивают получение мелкоигольчатого мартенсита при закалке. Остальные карбидообразующие элементы при небольшом количестве их в составе стали, а также некарбидообразующие элементы при нагреве растворяются в аустените и при закалке образуют легированный мартенсит.

Легирующие элементу оказывают незначительное влияние на распад мартенсита только при температурах ниже 200 °С. При более высоких температурах введение в сталь Cr, Mo, W, V, Si и Ti сильно тормозит процессы распада мартенсита, образования и роста частиц карбидов. Это имеет большое практическое значение. Если в углеродистой и низколегированной стали состояние отпущенного мартенсита, обладающего высокой твердостью, сохраняется лишь до 250—350 С, то в высоколегированной стали такое состояние сохраняется до 450—500 °С и выше.

В таблице 1 показано распределение легирующих элементов в разных фазах конструкционной стали после закалки.

Рис.3 . Влияние легирующих компонентов на мартенситную точку Мн в сталях с 0.76…1.0% С (Зюзин, Садовский и Баранчук).

Таблица 1

Характер термообработки Легирующий элемент
В твердом растворе В карбидной фазе
Отжиг Si, Al, Ni, Cu, Mn, Cr, Mo, W Mn, Cr, Mo, W, Nb, V, Zr, Ti
Закалка Si, Ni, Al, Cu, Mn, Cr, V, Mo, W Nb, V, Zr, Ti, Cr, Mo, W

Отпуск при 600°С

(Улучшение)

Si, Ni, Al, Cu, Mn, Cr, Mo, W Zr, Ti, V,Mn

Примечание: если легирующий элемент может присутствовать в разных фазах, предпочтительная форма его содержания в стали , выделена жирным шрифтом.

На рис. 3 показано, что легирующие элементы (за исключением А1, Со) снижают температуру мартенситного превращения. Вследствие этого в легированных сталях после закалки часто наблюдается большое количество остаточного аустенита.

4. Микроструктура мартенсита

Как уже нами установлено мартенситом, называется пересыщенный твердый раствор углерода в α-железе.

Так как в кристаллической решетки мартенсита имеется избыточное количество атомов углерода по сравнению с тем, которое может раствориться в феррите (~0,01 % С), то это приводит к искажению формы решетки (рис. 4, а, б). Такая решетка, у которой отношение c/а > 1, называется тетрагональной. А отношение c/а – степенью тетрагональности.

Рис. 4 . Кристаллическая решетка мартенсита (а); влияние содержания углерода на параметры с и а решетки мартенсита (Т. В. Курдюмов, Э. З. Каминский)


На рис 4, а приведена схема ячейки кристаллической решетки мартенсита; рис 1, б показывает изменение параметров решетки мартенсита разных по составу сталей, откуда видно, что степень тетрагональности с/а мартенсита прямо пропорциональна содержанию углерода в стали.

Кристаллы мартенсита в пространстве представляют собой пластины, сужающиеся к концу, и поэтому на фотографии, снятой с плоскости шлифа, кажутся игольчатыми. Электронно-микроскопические и рентгеновские исследования позволяют мелкоблочное строение отдельных кристаллов мартенсита. Размер блоков порядка 10-6 см. Относительно друг друга кристаллы мартенсита расположены под утлом 60 и 120°. Это дает основание для заключения, что они возникают по определенным кристаллографическим плоскостям кристаллов исходной аустенитной фазы.

Размер мартенситных кристаллов зависит от величины кристаллов аустенита: из мелкозернистого аустенита образуется мелкоигольчатый мартенсит, и наоборот.

Рентгенографическими исследованиями Г. В. Курдюмова было показано, что плоскость (111) и направление [110] аустенитного кристалла при превращении А>М соответственно параллельны плоскости (110) и направлению [111] мартенситного кристалла. Это открытие позволило объяснить ряд особенностей механизма превращения аустенита в мартенсит.

Отмеченная взаимная ориентировка решеток г.ц.к. и о.ц.к. при образовании кристаллического зародыша мартенсита в максимальной степени соответствует принципу структурного размерного соответствия решеток аустенита и мартенсита.

В начале превращения А->М кристаллическая решетка мартенсита когерентно связана с решеткой аустенита (рис. 6, а). Поэтому при превращении решетки г.ц.к. в о.ц.к., атомы железа смещаются на расстояния, меньшие периода решетки, и нет необходимости в самодиффузии атомов железа, что при низких температурах превращения А->М происходить не может.

Характерно, что при превращении решетки А→М смещения атомов железа носят закономерный характер в определенных направлениях по отношению к своим соседям. В результате таких перемещений атомов в одну и ту же сторону получается реальный сдвиг. Такой механизм роста кристаллов получил ; название сдвигового механизма роста.

К-во Просмотров: 338
Бесплатно скачать Реферат: Мартенситное превращение