Реферат: Математическая логика в младших классах

В первые в истории русской школы в соответствии с новой программой в начальный курс математики включены элементы алгебры. Учащиеся 1 – 3 классов должны получить первоначальные сведения о математических выражениях, числовых равенствах и неравенствах, ознакомиться с буквенной символикой, с переменной, научить решать несложные уравнения и неравенства.

Алгебраический материал изучается, начиная с первого класса в тесной связи с арифметическим. Введение элементов алгебры способствует обобщению понятий о числе, арифметических действиях, математических отношениях и вместе с тем готовить детей к изучению алгебры в следующих классах.

Обучаясь в 1 – 3 классах дети должны научиться читать и записывать выражения, усвоить правила порядка выполнения действий в выражениях содержащих два и более действия, практически познакомиться с преобразованием выражений на основе использования изученных свойств арифметических действий.

Работа над выражением тесно связано с изучением самих действий и оказывает большое влияние на владение школьниками такими понятиями, как равенства, неравенства, уравнения. И поэтому, недостаточно ясное представление о простейших выражениях сумме и разности двух чисел является причиной ошибок при выполнении первоклассниками ряда заданий. Только глубокое понимание структуры выражения и твердое знание правил порядка действий могут предупредить дальнейшее не понимание предмета.

Все это обязывает к необходимости разработки системы упражнений по формированию понятия выражения у учащихся начальной школы с учетом возникающих трудностей.

На практике выражением иногда называют последовательность математических символов, включающую знаки отношений: « > », « < », «=». Например, прочитайте выражение: (90 + 30) : 10 > 90 : 10; из заданных выражений выпишите только верные: 7 + 3·5 = 22, (7 + 3)·5 = 22, 7 + 3·5 = 50 и т. д. Конечно, в этих случаях речь должна идти о равенствах и неравенствах, которые являются конкретными видами высказываний. Выше приведенный пример свидетельствует о поверхностных знаниях учителя, что, безусловно, отразится на знаниях учащихся. Поэтому есть основания утверждать, что нечеткое понимание педагога, казалось бы, элементарного материала может привести детей к непониманию и противоречиям.

Практическая значимость исследования определяется тем что в нем разработаны и проверенны:

1. Системы задач для темы «Алгебраический материал», в том числе: устных, опорных, стандартных, повышенной трудности, нестандартных, исследовательских , занимательных.

2. Разработка работ, направленных на развитие умений.

Глава I .

Исторические и психолого-педагогичекие основы темы «Математические слова и предложения. Развитие логического мышления при изучение элементов алгебры и математической логики.»

§ 1. История возникновения математической логики и алгебры.

Кто хочет ограничится настоящим, без знания

прошлого, тот никогда его не поймет …

Лейбниц.

Алгебра – один из больших разделов математики, принадлежащий к числу старейших ветвей этой науки. Задачи, а также методы алгебры, отличающие ее от других отраслей математики, создавались постепенно, начиная с древности. Алгебра возникла под влиянием нужд общественной практики.

Алгебре предшествовала арифметика. Характерное отличие алгебры от арифметики заключается в том, что в алгебру вводится неизвестная величина. Намек на такую трактовку арифметических задач есть уже в древне – египетском папирусе Ахмеса (2000 – 1700 до н. э.), где искомая величина называлась словом «куча» и обозначается соответствующим знаком-иероглифом.

В начале 20 века были расшифрованы многочисленные математические клинописи и другие из древнейших культур – вавилонской. Это открыло миру высоту математической культуры существовавшей уже за 4000 лет до наших дней.

Первые общие утверждения о тождественных преобразования встречаются у древнегреческих математиков, начиная с VI века до н. э.

Среди математиков Древней Греции было принято выражать все алгебраические утверждения в геометрической форме. Большинство задач решалось путем построений циркулем и линейкой.

В Египте решали задачи способом «аха», а в Вавилоне задачи решались по сути дела с помощью уравнений. Только в то время еще не умели применять в математике буквы. Поэтому вместо букв брали числа, показывали на числах, как решать задачу, а потом уже все похожие на нее задачи решали тем же способом.

Многие уравнения умел решать греческий математик Диофант, который даже применял даже букв для обозначения неизвестных. Но по-настоящему метод уравнений сформировался в руках арабских ученых, первым написал книгу на арабском языке о решении уравнений Мухаммед Ибн Муса ал – Хорезми. Название у нее было очень странное – «Краткая книга об исчислении ал – джабры и ал – мукабалы.» В этом названии впервые прозвучало известное нам слово «алгебра».

Один персидский математик изложил в стихах обозначение слов «ал - джабра» и «ал - мукабала».

Ал – джабра.

При решении уравнения

Если в части одной,

Безразлично какой,

Встретится член отрицательный,

Мы к обеим частям,

С этим членом сличив,

Равный член придадим,

Только с знаком другим, -

И найдем результат нам желательный.

Ал – мукабала.

Дальше смотрим в уравнение,

Можно ль сделать приведенье,

Если члены в нем подобны,

Сопоставить их удобно,

Вычтя равный член из них,

К одному приводим их.

Таким образом, название «ал - джабра» носила операция переноса отрицательных членов из одной части уравнения в другую, но уже с положительным знаком. По-русски это слово означает «восполнение». Поэтому в Испании, которая долгое время была под арабским владычеством, слово «алгебрист» означало совсем не математика, а … костоправ.

А слово «ал - мукабала» означало приведение подобных членов. Оно не такое употребимое как «ал – джабра» и о нем помнят только историки науки.

Вскоре начали изучение более сложных уравнений, но их успешному решению мешало то, что не применяли букв. Но вскоре уравнения, которыми занимались итальянские и немецкие математики, стали настолько сложными, что без букв оказалось к ним подступится. И тут началось внедрение букв в алгебру.

С VI века центр математических исследований перемещается в Индию и Китай, страны Ближнего Востока и Средней Азии. Индийские математики использовали отрицательные числа и усовершенствовали буквенную символику.

В Западной Европе изучение алгебры началось в XIII веке. Одним из крупных математиков этого времени был итальянец Леонардо Пезанский. Его «Книга абака» - тракт, который содержал сведения об арифметике и алгебре до квадратных уравнений включительно. Первым крупным самостоятельным достижением западноевропейских ученых было открытие в XVI веке формулы для решения кубического уравнения. В конце XVI века французский математик Ф. Виета ввел буквенные обозначения не только для неизвестных, но и для произвольных постоянных.

Развитие буквенной символики позволило установить общие утверждения, касающиеся алгебраических уравнений. В конце XVIII века было доказано, что любое алгебраическое уравнение с комплексными коэффициентами имеет хотя бы один комплексный корень. Это утверждение носит название основной темы алгебры.

В начале XIX века алгебра получила самостоятельное обоснование, не опирающаяся на геометрические понятия. Таким образом, в течение XIX века в математике возникли разные виды алгебр.

В области преподавания арифметики Россия в XIX веке создала свою передовую математическую школу, далеко опередив в этом смысле западноевропейскую школу. Алгебра как дисциплина более абстрактная оказалась в сильной зависимости от формально – схоластических тенденций.

Программы курса алгебры в первой половине XIX века поражают своей громос т коcтью. Великий русский геометр с успехом преподавал математику в гимназии и, кроме учебника геометрии, создал учебное руководство по алгебре. В 1985 году Н. И. Лобачевский представил в Казанский университет рукопись «Алгебра». Также над алгебраическими вопросами работают и такие математики как В. А. Евтушевский («Сборник арифметических задач») в первой части, которой ставится задача введение «алгебраического языка»; переход к буквенным обозначениям от числовых формул задач, П. Л. Чебышев («Руководство алгебры») и т. д.

Начало нового века внесло существенные коррективы в преподавание алгебры. Передовая педагогическая мысль признала, что в курс алгебры должны быть включены: идеи переменной величины, понятие функции.

К-во Просмотров: 459
Бесплатно скачать Реферат: Математическая логика в младших классах