Реферат: Математическая модель всплытия подводной лодки

,

где вектор - это вектор силы тяжести, действующей на лодку. - некоторая функция зависящая от времени.

Запишем это векторное уравнение в проекциях на оси.

В проекции на ось :

В проекции на ось :

В результате получим систему дифференциальных уравнений:

,

где масса - функция зависящая от времени. Решая эту систему для произвольного значения , и заданных начальных условий, мы получим уравнение траектории движения подводной лодки.

Пусть масса лодки изменяется по линейному закону , где - масса корпуса, - это скорость вытеснения воды из цистерн, которую будем считать постоянной, а- некоторый момент времени, в который вся вода из цистерн вытеснена. Как показано на рис.3, в некоторый момент времени произведение будет равняться 0, и мы

Рис. 3 получим , то – есть, вся вода из цистерн будет вытеснена.

Решим эту систему для частного случая.

Пусть = 1. В начальный момент времени лодка находится в начале координат, а вектор её скорости направлен по горизонтали и равен .

Тогда начальные условия будут такими:

.

В рассматриваемом частном случае, система уравнений принимает следующий вид:

.

Первое уравнение этой системы зависит только от,второе только от,поэтому их можно разделить. Решим сначала первое уравнение системы.

Так как в это уравнение не входит , можно сделать замену . Решая таким образом полученное уравнение первого порядка с разделяющимися переменными, получим:

.

.

Решим второе уравнение системы.

Делая аналогичную замену, получим линейное неоднородное уравнение, решая которое, получим:

К-во Просмотров: 238
Бесплатно скачать Реферат: Математическая модель всплытия подводной лодки