Реферат: Математическая модель всплытия подводной лодки
Траектория движения подводной лодки для заданных начальных условий и =1 изображена на рис. 4.
Решим исходную систему для произвольного значения параметра .
На накладывается ограничение:,
так как только при выполнении этого условия, сила сопротивления оказывается прямо
Рис 4. пропорциональна скорости.
Систему
приведем к нормальной форме Коши, вводя новые переменные.
.
В результате получим систему состоящую из четырех дифференциальных уравнений первого порядка:
.
Начальные условия для которой имеют вид:
.
Решения этой системы для нескольких значений параметра представлены на рис. 5.
Рис. 5 а.
Так как при близких значениях траектория почти не изменяется и графики сливаются, для большей наглядности изобразим их в более крупном виде.
Рис.5 б.
На рис.5 а,б изображены решения исходной системы для
Найдем значение для которого время всплытия будет наименьшим и уравнение движения при этом значении параметра. Очевидно, что если то , и система принимает следующий вид:
,
где - функция, зависящая от времени.
График решения этой системы представлен на рис.6.
Функция возрастет быстрее, чем в случаях с другим значением . А это значит, что, при данном значении параметра, она всплывет с определенной глубины за минимальное время.
Рис. 6 При отрицательном значении праметра траектория будет практически совпадать с траекторией , но, в этом случае, задача теряет физический смысл.
Заключение.
Мы рассмотрели только частные случаи решения задачи. Исходную систему, невозможно решить в общем виде, без использования ЭВМ, или численных методов решения задачи.
Но, уже по частным случаям решений, можно увидеть некоторую закономерность, на основании которых, уже можно делать какие-то выводы.