Реферат: Математическое моделирование процесса триплет-триплетного переноса энергии
Безызлучательный перенос энергии триплетного возбуждения между молекулами – проблема весьма актуальная, поскольку этот процесс лежит в основе многих биологических процессов (фотосинтез), находит широкое применение в медицине (фотодинамическая терапия рака) и технике (лазеры на красителях). В связи с этим, изучение основных закономерностей межмолекулярного триплет-триплетного переноса энергии представляет определённый интерес для науки.
Основные параметры этого процесса установлены при исследовании фосфоресценции донора в отсутствие и в присутствие акцептора в твёрдых растворах. Для однокомпонентных растворов кинетика заселения и распада триплетных состояний хорошо изучена теоретически и экспериментально [ ]. Для двухкомпонентных растворов, которые используются для наблюдения межмолекулярного триплет-триплетного переноса энергии, теоретического исследования законов разгорания и затухания сенсибилизированной фосфоресценции в литературе не обнаружено.
Для рассмотрения кинетики накопления триплетных молекул акцептора использовалась трехуровневая схема для молекул донора и двухуровневая для молекул акцептора (рис.1). Константы скоростей соответствующих переходов обозначены следующим образом (в нашем случае константа перехода есть сумма констант излучательного и безызлучательного переходов ):
Концентрация молекул в состоянии S0 обозначена через n0, в состоянии S1 - n1, в T1 - n2.
Кинетика накопления триплетных молекул донора в присутствии акцептора описана уравнениями (1)-(3), кинетика накопления триплетных молекул акцептора – (4)-(5).
; (1)
; (2)
; (3)
; (4)
, (5)
где индексы A и D указывают на то, что данная величина относится к молекулам акцептора или донора соответственно; N – общее число молекул в растворе, участвующих в данном процессе; kT - константа тушения триплетного состояния донора за счёт переноса энергии на акцептор; kП – константа перехода молекул акцептора из основного состояния в триплетное в результате переноса энергии; k0=IВR (IВ - интенсивность возбуждающего излучения; R – константа).
Кинетика дезактивации триплетного состояния донора в присутствии молекул акцептора описана уравнением (6), кинетика дезактивации триплетных молекул акцептора – (7):
, (6)
. (7)
Константа тушения триплетных молекул донора kT связана с константой перехода молекул акцептора kП следующим образом. Число триплетных молекул донора, перешедших за время dt в основное состояние за счет переноса энергии равно числу молекул акцептора, перешедших в триплетное:
. (8)
Решения уравнений (1)-(3) и (4)-(5) показали, что закон накопления триплетных молекул акцептора, как и закон накопления триплетных молекул донора носят экспоненциальный характер. Значения, к которым стремятся при насыщении концентрации триплетных молекул донора и акцептора (условия стационарного возбуждения) различные:
, (9)
. (10)
Существенным образом различаются также времена накопления числа триплетных молекул донора и акцептора.
Дезактивация триплетных состояний молекул донора и акцептора после прекращения возбуждения происходят по экспонентам, с соответствующими временами, отличными от времен накопления. Причем как для донора, так и для акцептора, время накопления всегда меньше или равно времени дезактивации.
В отсутствие реабсорбции излучения стационарная интенсивность фосфоресценции пропорциональна концентрации триплетных молекул,
Зависимость стационарной концентрации триплетных молекул акцептора энергии от мощности возбуждения
Зависимость интенсивности сенсибилизированной фосфоресценции (стационарной) от мощности возбуждения, как следует из (13) и (11), можно представить в виде
, (16)
где - постоянные величины. В выражении (16) от мощности возбуждения зависит величина.
Решение системы уравнений (1а)-(4а) дает зависимость от возбуждающего света
. (17)
Введя соответствующие обозначения: , и подставляя (17) в (16), окончательно получим
--> ЧИТАТЬ ПОЛНОСТЬЮ <--