Реферат: Математическое моделирование в медицине

самостоятельные функции и становится все более необходимой сту-

пенью в пpоцессе создания теоpии.

Во второй половине двадцатого столетия широкое развитие получила такая сопутствующая медицине наука как иммунология. Успехи, достигнутые в иммунологии, оказывают прямое влияние на методы лечения, на всю клиническую практику в медицине. Проблемы иммунологии тесно связаны с проблемами лечения (послеоперационное заживление ран, трансплантация органов, раковые заболевания, аллергии и иммунодефициты).

К настоящему времени клиницистами и иммунологами накоплен огромный материал наблюдений за течением различных инфекционных заболеваний и на основе анализа этого материала получены фундаментальные результаты ,касающиеся механизмов взаимодействия антигенов и антител на различном уровне детализации: от макроскопического до внутриклеточного генетического .Эти результаты позволили подойти к построению математических моделей иммунных процессов. В подготовке этого реферата были использованы материалы монографии Г.И.Марчука «Математические модели в иммунологии»,в частности, простейшая математическая модель заболевания, которая будет рассматриваться далее. Простейшая математическая модель будет построена на основе соотношения баланса для каждого из компонентов участвующих в иммунном ответе. Именно ввиду такой концепции частные особенности функционирования иммунной системы не оказываются существенными для анализа динамики болезни, а на первый план выступают основные закономерности протекания защитной реакции организма. Поэтому при построении математической модели не будут различаться клеточные и гуморальные компоненты иммунитета, участвующие в борьбе с антигенами, проникшими в организм. Предположим лишь, что такими компонентами организм располагает. Они будут названы антителами, в независимости от того, имеем ли мы дело с клеточно-лимфоидной системой иммунитета или с гуморально-иммуноглобулиновой. В этой модели предполагается также, что организм располагает достаточными ресурсами макрофагов, утилизирующих продукты иммунной реакции, а также других неспецифических факторов, необходимых для нормального функционирования иммунной системы . В связи с этим мы ограничимся рассмотрением трех компонентов : антигена антитела и плазматической клетки , производящей антитела. В качестве антигенов здесь будут выступать патогенные бактерии, либо вирусы. Следует также отметить, что при заболевании большое значение имеет степень поражения органа, подверженного атаке антигенов, поскольку оно в конечном итоге приводит к снижению активности иммунной системы. Это, естественно, должно быть отражено в математических моделях.

Итак, будем считать, что основными действующими факторами инфекционного заболевания являются следующие величины.

1) Концентрация патогенных размножающихся антигенов V(t).

2) Концентрация антител F(t).

3) Концентрация плазматических клеток C(t).

4) Относительная характеристика пораженного органа m(t).

Переходим к построению уравнений модели. Первое уравнение будет описывать изменение числа антигенов в организме:

dV= Vdt-FVdt. (1)

Первый член в левой части этого уравнение описывает прирост антигенов dV за интервал времени dt за счет размножения .Естественно, что он пропорционален V и некоторому числу , которое будем называть коэфициентом размножения антигенов . Член FVdt описывает число антигенов ,нейтрализируемых антителами F за интервал времени dt .В самом деле, число таких вирусов, очевидно,будет пропорционально как количеству антител в организме, так и количеству антигенов; -коэфициент, связанный с вероятностью нейтрализации антигена антителами при встрече с ним. Разделив соотношение (1) на dt получим:

dV/dt=(F)V.

Второе уравнение будет описывать рост плазматических клеток.

dC=F(t-)V(t-V(t-dt-u(C-C*)dt. (2)

Первый член правой части-генерация плазмоклеток,-время,в течение которого осуществляется формирование каскада плазматических клеток,-коэфициент,учитывающий вероятность встречи антиген-антитело, возбуждение каскадной реакции и число образующихся новых клеток.Второй член во второй формуле описывает уменьшение числа плазматических клеток за счет старения, u-коэфициент,равный обратной величине их времени жизни.Разделив соотношение (2) на dt, приходим к уравнению :

dC/dt= F(t-)V(t-V(t- u(C-C*).

Для получения третьего уравнения подсчитывают баланс числа антител, реагирующих с антигеном.Исходят из соотношения:

dF=pCdt-FVdt-ufFdt. (3)

pCdt-генерация антител плазматическими клетками за интевал времени dt, p-скорость производства антител одной плазматической клеткой,FVdt-описывает уменьшение числа антител в интервале времени dt за счет связи с антигенами . ufFdt-уменьшение популяции антител за счет старения,где uf-коэфициент,обратно пропорциональный времени распада антител.Разделив (3) на dt получим:

dF/dt=pC-(uf+ V)F.

Введем в рассмотрение уравнение для относительной характеристики поражения органа- мишени.М-характеристика здорового органа.М*-соответствующая характеристика здоровой части пораженного органа Вводим в рассмотрение величину m по формуле:

m=1-M*/M

Для непораженного органа ,m равна нулю,для полностью пораженного –единице.Для этой характеристики рассмотрим уравнение(четвертое уравнение):

dm/dt=V-um

Первый член правой части характеризует степень поражения органа. V-количество антигенов, где -некоторая константа ,своя для каждого заболевания. Уменьшение этой характеристики происходит за счет восстановительной деятельности организма.

Совершенно ясно, что при сильном поражении жизненно важных органов производительность выработки антител падает. Это является роковым для организма и ведет к летальному исходу. В нашей модели фактор поражения жизненно важных органов можно учесть в уравнении (2), заменив коэффициент на произведение (m). Типичная схема для этой функции представлена на рис.1:

На этом рисунке кривая в интервале 0<=m<=m* равна 1. Это значит, что работоспособность иммунологических органов в этом интервале не зависит от тяжести болезни. Но далее их производительность быстро падает. Таким образом, приходим к следующей системе нелинейных обыкновенных дифференциальных уравнений:

dV/dt=(F)V,

К-во Просмотров: 476
Бесплатно скачать Реферат: Математическое моделирование в медицине