Реферат: Математическое программирование и моделирование в экономике и управлении
n – число видов продукции (работ);
bi – фонд эффективного рабочего времени i-исполнителя в планируемом периоде в часах;
aij – показатель нормы затрат на производство j-продукции у i-исполнителя;
A=[ аij ]mxn – известно;
сij – показатель прибыли от единицы j-продукции у i-исполнителя;
С=[ сij ] mxn – известно;
Pj – вектор показателей, которые характеризуют объёмы выпуска продукции (выполнения работ) по всем видам – известно.
Требуется найти план распределения производственного задания между исполнителями, при котором это задание было бы выполнено с максимальной суммарной прибылью от реализации всей продукции.
xij – объём (количество) j-продукции выработанной i-исполнителем;
Х=[ xij ]mxn – искомые величины.
Целевая функция:
Система ограничений:
При решении этой системы линейных уравнений и неравенств, нужно найти такие неотрицательные значения переменных, чтобы целевая функция принимала максимальное значение.
Методология математического моделирования раскройной задачи (задачи оптимизации программы раскроя материалов).
Пусть имеются ДСП стандартных размеров, из которых необходимо нарезать m различных по размеру заготовок и деталей для производства мебели. ДСП определённого размера может быть раскроена n способами (вариантами). По каждому из возможных вариантов раскроя составляется соответствующая карта раскроя, из которой видно, что при j (j=1,2…n) способе раскроя из одной плиты получается определённое количество (обозначим через aij ) заготовок i (i=1,2…m) вида (размера). По картам раскроя устанавливается также величина отходов (площадь, вес, стоимость) при раскрое одной плиты j способом (обозначим – сj ). В задании на раскрой должно быть указано общее количество заготовок каждого i вида (размера) – bi , которое необходимо нарезать из плит, поступивших в раскрой (обозначим – R). В задаче требуется определить оптимальный план раскроя ДСП, обеспечивающий минимальные отходы (или минимальный расход раскраиваемых материалов), при условии выполнения задания по выходу заготовок.
xj – количество ДСП, которое следует раскраивать с тем, чтобы нарезать заданное число заготовок каждого вида, при этом суммарные отходы (или суммарный расход плит) должны быть минимальными.
Виды заготовок |
Задание по раскрою | Способы раскроя |
1 ……………………. j ………………….. n | ||
1 . . . i . . . m | b1 . . . bi . . . bm | A=[ аij ]mxn |
Отходы | C=[ cj ] n |
Критерий оптимальности:
Система ограничений:
При решении этой системы линейных уравнений и неравенств, нужно найти такие неотрицательные значения переменных, чтобы целевая функция принимала минимальное значение.
Рассмотрим пример решения задачи оптимизации программы раскроя материалов симплексным методом.
F=0.26x1 +0.28x2 +0.3x3 +0.29x4 =min
F=0.26x1 +0.28x2 +0.3x3 +0.29x4 +0x5 +0x6 +0x7 +0x8 +0x9 +M(y1 +y2 +y3 +y4 )=min