Реферат: Математическое выражение музыки

си до ре ми фа соль ля си до1

.243 1 256 9 32 81 4 1024 3 128 27 16 243 2 512

256 243 8 27 64 3 729 2 81 16 9 128 243...


то в таком строе все квинты будут звучать чисто (иметь интервальный коэффициент 3/2), кроме одной. Квинта си - соль-бемоль будет иметь интервальный коэффициент 1024 / 729 : 243 / 256 ~ 1,4798, а не 1,5! От чистой квинты она отличается на пифагорову комму: 1,5 / 1,4798 ~ 10136. Такая квинта на органе издавала пронзительный, неприятный звук, похожий на завывание волка, за что и была прозвана “волчьей квинтой” или просто “волком”. Обращением “волчьей квинты ” является “волчья кварта” соль-бемоль - си , которая тоже отличается от чистой кварты (4/3 = 1,333...) на пифагорову комму: 243 / 127 : 1024 / 729 ~ 1,3515;

1,3515 / 1,3333 ~ 1,0136. Можно сказать, что вся история развития музыкальных строев была историей борьбы с “волками”. Но об этом - чуть позже.

А сейчас обратим внимание на второй существенный недостаток пифагорова строя. Его заметил ещё во II веке древнегреческий ученый пифагореец Дидим. Дело в том, что пифагорова терция (81 / 64) при гармоническом, т.е. одновременном, исполнении обоих тонов, образующих терцию, звучит слишком напряжённо. Дидим предложил заменить пифагорову терцию (81 / 64) так называемой “чистой терцией” (5 /4 = 80 / 64), которая гармонически звучит значительно приятнее, хотя, как видим, лишь чуть - чуть отличается от пифагоровой терции. Разность пифагоровой и чистой терций (81 / 64 : 80 / 64 = 81 / 80 ~ 1,0125) называется дидимовой коммой и приблизительно равна1 / 10 целого тона.

Однако идеи Дидима, как это не раз случалось сучёными Древней Греции, опередили историю почти на полторы тысячи лет. Они не нашли подходящей почвы для развития, увяли, умерли и были воскрешены только в конце XV века...

...В XIV веке в Европе получает широкое распространение орган, ставший официальным инструментом католической церкви. С развитием органа развивается и многоголосие, которого не знала ни Древняя Греция, ни раннее средневековье. В течение столетий орган настраивался в пифагоровом строе. Никакого другого строя средневековье не знало. Но пифагоровы терции звучали на органе особенно жёстко и не давали покоя музыкантам.

В XVI веке выдающийся итальянский композитор и музыкальный теоретик Джозеффе Царлино (1517-1590) воскресил идеи Дидима. Так родился новый квинтово - терцовый строй, названный чистым строем. Новое всегда с трудом пробивает себе дорогу. Учение Царлино подверглось резким нападкам. Любопытно, что среди тех, кто не признавал учения Царлино и вёл с ним непримиримую борьбу, был Винченцо Галилей - выдающийся итальянский лютнист и отец великого революционера Галилео Галилея.

Чистая терция (5 /4), ставшая наравне с квинтой полноправной хозяйкой нового строя, звучит приятнее пифагоровой. Отметим одну поразительную закономерность: интервальный коэффициент чистой терции (её называют также большой терцией) есть среднее арифметическое интервальных коэффициентов основного тона (1) и квинты (3 /2):

А дополнение большой терции (5 /4) до квинты (3 /2) - малая терция (3 /2 : 5 /4 = 6 /5) - является средним гармоническим основного тона и квинты:

Оба этих интервала дают приятное звучание; таким образом, закон целочисленных отношений Пифагора расширяется, а внутри музыкальной гаммы появляются ещё две пропорции!

Предполагают, что ещё Архит умел выражать большую и малую терции как среднее арифметическое и гармоническое тона и квинты. Однако письменное свидетельство этому мы находим лишь в объёмном труде “Универсальная гармония” Марена Мерсенна (1588-1648) - монаха францисканского ордена, французского математика, теоретика музыки и философа, учившегося в иезуитском колледже Ла Флеш вместе с Рене Декартом. Труд Мерсенна - нескончаемое исследование об интервалах, полное всеобъемлющих умозрений. На десяти страницах огромного формата автор глубокомысленно обсуждает, например, “является ли унисон консонансом”, и попутно решает вопрос, “как бы человек мог поднять землю”, и т.д. Однако, несмотря на чрезвычайную напыщенность, которая, впрочем, была неотъемлемой чертой всех сочинений того времени, работа Мерсенна содержала интересные идеи и прозрения. В частности, это касалось консонантности и пропорций большой и малой терций. Сегодня большую и малую терции относят к группе несовершенных консонансов.

Но вернёмся к работам Царлино. Выдающейся заслугой его было не только выявление консонантности большой терции (5 /4), но и построение “совершенной гармонии” - объединение большой терции и квинты в гармоническое трезвучие. Это был первый в истории музыки аккорд, а само трезвучие

ныне именуется мажорным и является основой всего гармонического языка музыки. Кроме того, Царлино обнаружил, что если отложить те же большую терцию и квинту вниз от основного тона, то окраска звучания аккорда существенно изменится. Светлые тона мажора подёргиваются пасмурной дымкой иного звучания - минора. Приводя аккорд 2/3 : 4/5 : 1 к основному тону (умножая на 3/2, т.е. сдвигая вверх на квинту), получаем минорное трезвучие

Так был открыт закон, известный сегодня каждому юному музыканту: смена большой терции на малую переводит мажорное трезвучие в минорное.

Мажорное трезвучие было взято за основу чистого строя. Обрамляя мажорное трезвучие 1 : 5/4 : 3/2 такими же трезвучиями сверху и снизу и сводя умножением и делением на 2 построенные звуки в одну октаву, получаем чистый строй лидийской гаммы (натурального мажора)

до ре ми фа соль ля си до1

1 9 5 4 3 5 15 2

8 4 3 2 3 8

9 10 16 9 10 9 16

8 9 15 8 9 8 15

Отмечены тоны, изменившиеся по сравнению с пифагоровым строем, цифры внизу обозначают интервалы между ступенями.

Как видим, числовые характеристики чистого строя более простые. Однако сам строй стал менее равномерным: в нём, кроме полутона 15 /16, появились две разновидности целых тонов 9/8 и 10/9. Знакомые с музыкальной грамотой, конечно, увидели, что мажорные трезвучия (4:5:6) чистого строя построены на тонике (до ), субдоминанте (фа), и доминанте (соль ).

С помощью целых тонов 9/8 и 10/9 и полутона 16/15 легко построить чистый строй фригийской гаммы:

К-во Просмотров: 261
Бесплатно скачать Реферат: Математическое выражение музыки