Реферат: Материальные и информационные модели на Access
Моделирование любой системы невозможно без предварительной формализации. По сути, формализация — это первый и очень важный этап процесса моделирования.
Одним из наиболее распространенных формальных языков является алгебраический язык формул в математике, который позволяет описывать функциональные зависимости между величинами. Модели, построенные с использованием математических понятий и формул, называются математическими моделями .
Математическое моделирование
Основные этапы математического моделирования:
1.Создание качественной модели. Выясняется характер законов и связей, действующих в системе. В зависимости от природы модели эти законы могут быть физическими, химическими, биологическими, экономическими. Задача моделирования — выявить главные характерные черты явления или процесса, его определяющие особенности.
2.Создание математической модели:
-выделение существенных факторов;
-выделение дополнительных условий — начальных, конечных, условий спряжений и т.д.
Если модель описывается некоторыми уравнениями, то модель называется детерминированной . Если фундаментальные законы, управляющие моделируемым явлением, неизвестны и используются гипотезы, то модель описывается вероятностными законами, такая модель называется стохастической .
3.Изучение математической модели:
-Математическое обоснование модели, исследование внутренней непротиворечивости модели.
-Качественное исследование модели, выяснение поведения модели в крайних и предельных ситуациях.
-Численное исследование модели.
Классификация математических моделей по цели моделирования
Дескриптивные модели (описательные) описывают моделируемые объекты и явления и как бы фиксируют сведения человека о них. Моделируя движение кометы, вторгшейся в Солнечную систему, описываются (предсказываются) траектория ее полета, расстояние, на котором она пройдет от Земли и т. д. Никаких возможностей повлиять на движение кометы, что-то изменить нет.
Оптимизационные модели служат для поиска наилучших решений при соблюдении определенных условий и ограничений. В этом случае в модель входит один или несколько параметров, доступных влиянию человека, например, известная задача коммивояжера, оптимизируя его маршрут, можно снизить стоимость перевозок.
Многокритериальные модели служат для оптимизации процесса по нескольким параметрам сразу. Например, зная цены на продукты и потребность человека в пище, можно организовать питание больших групп людей (в армии, летнем лагере и др.) как можно полезнее и как можно дешевле. Ясно, что эти цели, вообще говоря, совсем не совпадают, т.е. при моделировании будет несколько критериев, между которыми надо искать баланс.
Игровые модели могут иметь отношение не только к детским играм (в том числе и компьютерным), но и к вещам весьма серьезным. Например, полководец перед сражением в условиях наличия неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный достаточно сложный раздел современной математики - теория игр, изучающий методы принятия решений в условиях неполной информации.
Имитационные модели , в которых модель более или менее полно и достоверно подражает некоторому реальному процессу, т.е. имитирует его. Например, моделирование движения молекул в газе, когда каждая молекула представляется в виде шарика, и задаются условия поведения этих шариков при столкновении друг с другом и со стенками (например, абсолютно упругий удар); при этом не нужно использовать никаких уравнений движения.
Компьютерное моделирование
Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.
Математическая модель исследуемого процесса или явления на определенной стадии исследования преобразуется в компьютерную (вычислительную) модель, которая затем превращается в алгоритм и компьютерную программу. Процесс компьютерного моделирования предполагает использование вычислительной техники для проведения эксперимента с моделью.
Обобщенную схему компьютерного математического моделирования можно представить следующим образом:
Постановка задачи Математическое моделирование Алгоритмизация Программирование Расчеты и анализ результатов.
Этапы и цели компьютерного математического моделирования
Общая схема процесса компьютерного математического моделирования
Первый этап — определение целей моделирования. Модель нужна для того, чтобы:
- понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);
- научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);
- прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).
Второй этап — огрубление целей объекта. Определение списка величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначим первые (входные) величины через x 1 , x 2 ,..., xn вторые (выходные) через y 1 , y 2 ,...,yk . Символически поведение объекта или процесса можно представить в виде: