Реферат: Материаловедение 5

Введение.

Материаловедение — наука, изучающая связь между составом, строением и свойствами металлических сплавов и неметаллических материалов, а также рассматривающая закономерности их изменения под влиянием механических, физико-химических и других видов воздействий.

Свойства материалов определяются не только химическим составом, но и их структурой. Изменять структуру можно различными путями: легированием, гранулированием, деформированием, термической, химико- термической и термомеханической обработками и др. На структуру и свойства материалов помимо этого оказы­вают влияние высокое давление, вакуум, ультразвук, скорость охлаждения, ядерное облучение, обработка лазером и т.д.

Материаловедение базируется на научных основах физики, химии и новейших достижениях в области технологии получения полуфабрикатов и изделий.

Основы современного материаловедения были заложены выдающимися русскими учеными в области металлургии П.П Ломоносовым (1799—1855), впервые установившим связь между строением стали и ее свойствами, и Д.К.Черновым (1839—1921), который в 1868 г. открыл структурные превращения в сталях при их нагреве и охлаждении. Д.К. Чернов по праву считается основоположником металлографии — науки о строении металлов и сплавов. Его научные открытия легли в основу процессов ковки, прокатки и термической обработки стали. Дальнейшее развитие металловедение получило в работах видных отечественных ученых: Н.И. Беляева, Н.С. Курнакова, А.А. Байкова, С.С. Штейнберга, А.А. Бочвара, Г.В. Курдюма ва и др.

Наука о металлах развивается динамично, используя электронные микроскопы, микрорентгеноспектральный анализ и другую современную аппаратуру. Все это позволяет более глубоко и полно изучить строение металлов и сплавов, находить новые пути повышения их механических и физико-технических свойств. Создаются сверхтвердые сплавы, многослойные композиции с широким спектром свойств, металлические, алмазные и керамико-металлические материалы. В то же время в строительстве и прокладке газопроводов все большее применение получают полимерные материалы, обладающие совокупностью необходимых свойств и высокой долговечностью.

Знание основ материаловедения необходимо каждому специалисту, работающему в области создания, эксплуатации оборудования и систем газоснабжения. Только изучив свойства материалов, можно обоснованно выбрать их для использования, правильно разработать технологический процесс обработки.

Долгое время в технической практике люди использовали готовые природные материалы, совершенствовали их, создавали новые технологии производства и обработки. Вся история существования человечества связана с освоением материалов: каменный век сменился медно-каменным, а затем бронзовым и железным веками.

Изготовив первые орудия труда из камня и кости, человек стал обрабатывать древесину, шкуры, освоил обжиг глины. Следующим этапом освоения материалов стало плавление и литье меди,-затем открытие оловянной бронзы и освоение железа. Совершенствовалась технология переплавки металлических руд, прокаливанием и ковкой полуфабрикатов стали получать кузнечное железо.

Новую эпоху в развитии материалов открыло использование энергии падающей воды для привода машин. Появилась возможность нагревать металл до температур, превышающих температуру плавления железа, пере­рабатывать расплав в ковкое железо, очищать металлы от примесей. Эти достижения в области производства ма­териалов определяли уровень технического развития на протяжении многих веков.

Возрастание спроса на машины привело к возникновению машиностроения как отрасли промышленности. В то время мануфактурным производством была освоена лишь немногочисленная группа материалов, что ог­раничивало возможности развития машин.

Превращение ручных мануфактур в фабричную систему использования машин привело к изменению уровня техники и технологии материалов. Расплавленный чугун был впервые превращен в сталь.

Рост промышленности требовал больших объемов материалов. В связи с этим возникла необходимость научных обобщений и рекомендаций. Начиная с XIX века материаловедение стало прикладной наукой.

Научные исследования и открытия в области химии и металловедения способствовали развитию металлур­гического производства, созданию новых сплавов и методов их обработки. После открытия бензола началось развитие новой отрасли промышленности, вырабатывавшей красители, медикаменты и множество синтетических машиностроительных материалов. На основе теории химического строения вещества разработаны и получены полимеры. Новый материал бакелит стал первым продуктом промышленности пластических масс.

В XX веке разрабатываются и бурно развиваются новые технологические процессы: кислородно-конвертер­ный, электрометаллургия стали и ферросплавов; электросварка; термомеханическая обработка металлов и многие другие.

Благодаря фундаментальным исследованиям в области металловедения быстро растет число сплавов, обла­дающих специфическими свойствами: противокоррозионными, жаростойкими и жаропрочными, особыми магнитными, «памятью» механической формы и т.д.; создаются новые типы материалов: сверхпроводники, полупроводники и др.

Развиваются исследования в области синтеза и переработки полимеров, направленные на улучшение их механических свойств, повышение стойкости к воздействию сред и высоких температур. Одним из направлений материаловедения стало получение композиционных материалов путем сочетания разнородных компонентов. Развитие технологий обработки и модификации материалов позволило применить традиционные материалы в жестких условиях эксплуатации современной техники.

Раздел 1. Металлургия черных и цветных металлов. Тема 1.1. производство чугуна и стали.

Тема 1.1 Производство чугуна.

ВЫПЛАВКА ЧУГУНА

Получение чугуна из железных руд осуществ­ляется в доменных печах. Доменные печи являются круп­нейшими современными шахтными печами. Большинство действующих печей имеют полезный объем 1300—* 2300 м3 — объем, занятый загруженными в них мате­риалами и продуктами плавки, и высоту примерно 30 м и предназначены для выплавки в сутки до 2000 т чугуна. В мире работает пока немного печей объемом более 2600 м3 . В 1974 г. в нашей стране вступила в строй первая домен­ная печь объемом 5000 м3 . Эта печь существенно отли­чается от печей, построенных ранее. На основе опыта ее работы в Череповце в 1986 г. вошла в строй действу­ющих еще более мощная доменная печь объемом 5600 м3 . В нее внесены серьезные конструктивные изменения, об­легчающие труд доменщиков и повышающие производи­тельность печи.

Сущность доменной плавки сводится к раздельной загрузке в верхнюю часть печи, называемой колошником, агломерата, кокса и флюсов, располагающихся в шахте печи слоями. При нагреве шихты за счет горения кокса, обеспечиваемого вдуваемым в горн горячим воздухом, в печи идут сложные физико-химические процессы, и шихта постепенно опускается навстречу поднимающимся горячим газам. В результате взаимодействия компонентов шихты и газов в нижней части печи, называемой горном, образуются два несмешивающихся жидких слоя — чугун и шлак.

На рис. 3.5 показана схема современной доменной печи объемом 2700 м3 . Два наклонных подъемника с опро­кидывающимися скипами вместимостью до 17 м3 достав­ляют агломерат, кокс и другие добавки на высоту 50 м к засыпному устройству доменной печи, состоящему из двух поочередно опускающихся конусов.

В верхней части горна расположены фурменные от­верстия (16—20 шт), через которые в печь под давлением 300 кПа подается обогащенный кислородом воздух при температуре 900—1200 °С.

Жидкий чугун выпускают каждые 3—2 ч (а в крупных печах ежечасно) поочередно через две или три летки, которые для этого вскрывают с помощью электробура. Выливающийся из печи чугун выносит с собой и шлак, находящийся над ним в печи. Чугун направляется по желобам литейного двора в чугуновозные ковши, распо­ложенные на железнодорожных платформах. Шлак, вы­ливающийся с чугуном, предварительно отделяют от чугуна в желобах с помощью перекрывающих затворов и направляют в шлаковозы. Кроме того, часть шлака иногда выпускают из доменной печи до выпуска чугуна через шлаковую летку. После выпуска чугуна летку забивают пробкой из огнеупорной глины с помощью электромагнит­ной пушки.Печь монтируют в прочном сварном стальном кожухе, интенсивно охлаждаемом водой. Внутри печь выклады­вают высококачественным шамотным кирпичом, а отдель­ные части печи изготовляют из прессованных углероди­стых блоков. Толщина боковых стенок печи в отдельных местах превышает 1,5 м, а лещади — 4 м. Печь полезным объемом 2700 м3 имеет высоту 80 м и массу с механизмом 200 000 т. Печь работает непрерывно в течение 4—8 лет.

Физико-химические процессы, протекающие в домен­ной печи, очень сложны и многообразны. Советские уче­ные, академики А. А. Байков, М. А. Павлов и другие обстоятельно занимались их изучением и создали капи­тальные труды по этим вопросам.

Условно процесс, протекающий в доменной печи, можно разделить на следующие этапы: горение углерода топ­лива; разложение компонентов шихты; восстановление оксидов; науглероживание железа; шлакообразование. Эти этапы процесса проходят в печи одновременно, пере­плетаясь друг с другом, но с разной интенсивностью, на разных уровнях печи.

Рис. 3.5. Схема доменной печи объемом 2700 м8 и ее примерный с)'точ- ныи баланс:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 1011
Бесплатно скачать Реферат: Материаловедение 5