Реферат: Механічна енергія

Силове поле називається потенціальним, якщо робота переміщення точки в цьому полі не залежить від форми шляху. В потенціальних полях діють лише консервативні сили.

Потенціальна енергія чисельно дорівнює роботі переміщення матеріальної точки (тіла) з даної точки простору в деяке фіксоване або нульове положення. Точка ”О” на рис.3.5. є фіксованою.

Знайдемо роботу переміщення матеріальної точки з положення М1 в положення М2. Для цього спочатку знайдемо роботу переміщення точки (тіла) з точки “М1” в точку “О” і з точки “М2” в точку “О”.

Рис.3.5.

, . (3.2.4)

. (3.2.5)

В цих розрахунках П1 і П2, згідно з визначенням, є потенціальними енергіями матеріальної точки (тіла) в точках М1 і М2 простору. Тому робота консервативних сил в потенціальних полях може бути виражена через втрату (зменшення) потенціальної енергії

П, де dП= - (П2 – П1). (3.2.6)

При заміні одного нульового положення іншим, потенціальна енергія змінюється на постійну величину. Таким чином, потенціальна енергія визначається неоднозначно, а з точністю до деякої константи. Однак це не впливає на кінцеві результати, так як в цьому випадку є важливою лише різниця потенціальних енергій dП.

Прикладами потенціальної енергії у деяких найпростіших випадках є:

П=mgh – потенціальна енергія однорідного поля тяжіння;

П= - потенціальна енергія розтягнутої на величину х пружини (початкова точка х=0);

П= - потенціальна енергія гравітаційного притягання точкових мас m і М.

3. Сила й потенціальна енергія. Поняття градієнта

Зв’язок сили й потенціальної енергії знайдемо із співвідношення (3.2.6)

, звідки . (3.2.7)

Потенціальна енергія є скалярною величиною. Однак її зміна в певному напрямі є векторною величиною. Зміна потенціальної енергії в певному напрямі називається градієнтом, тобто

. (3.2.8)

В рівності (3.2.8) вектором є градієнт.

Для руху матеріальної точки (тіла) в тривимірному просторі градієнт потенціальної енергії повинен враховувати проекції на осі координат х, у, z, тобто

, (3.2.9)

де - одиничні вектори в напрямках координатних осей х, у, z; - частинні похідні потенціальної енергії в напрямку відповідних осей координат.

Вираз (3.2.9) також можна записати через оператор набла, тобто

, (3.2.10)

де - - оператор набла.

В формулі (3.2.10) потенціальна енергія є скалярною величиною, а ось диференціювання скалярної величини по координатним осям дає вектор.

Вирази оператора набла і grad мають однаковий фізичний зміст, і відображують одну і ту ж зміну скалярної величини П в напрямку координатних осей х, у, z; тобто

. (3.2.11)

Градієнт скалярної величини П є вектор, який направлений вздовж нормалі в сторону зростання функції Пz (рис.3.6).

К-во Просмотров: 274
Бесплатно скачать Реферат: Механічна енергія