Реферат: Механизм роста кристаллитов фуллерита в пленках Sn – C60
5769
1331
1543
1173
При измерениях изотопа цезия (энергией гамма кванта 661.6 кэВ), может появиться еще один пик со средней энергией 669.6 кэВ. Причем, его частота появления - V в выборке различна для разных режимов и геометрий измерений. Это пик-дубль - Sd . Одновременно с цезием измерялись пики Со60 энергией 1173 кэВ и 1332 кэВ и соответственно площади пиков-дублей, энергией 1183 кэВ и 1343 кэВ. Средняя площадь пика-дубля с учетом частоты появления в выборке аппаратурных спектров определяется по формуле - sd =Sd V/100. Результаты экспериментов занесены в таблицу. Уменьшение времени собирания заряда увеличивают вероятность появления пика-дубля, следовательно, воздействие неэлектромагнитной компоненты поля опосредованно влияет на статистические распределения пика-дубля. В свою очередь, увеличение дефектов в кристаллической структуре ППД, приводит к уменьшению tpr и увеличению пика-дубля.
При дистанционном воздействии вращения на показания полупроводникового гамма - спектрометра, были выявлены некоторые свойства поля, генерируемого вращающимся объектом. Во-первых, поле метастабильно, т.е. обладает определённой памятью; во-вторых, оно хирально поляризовано (правое и левое, в зависимости от направления вращения); в-третьих, переносит информацию внутреннего состояния вращающегося объекта. В свою очередь, было отмечено следующее явление: присутствие каких-либо предметов возле радиоактивного источника в момент измерения (например, стакан) оказывает воздействие на результат опыта. Возможно, это так называемый "эффект форм". И, наконец, неоднородное пространственное распределение предполагает наличие стоячих волн. В свою очередь, инерционное вращение увеличивает эффект воздействия, это так же было замечено в экспериментах с вращающимися объектами, проведенными другими исследователями [6].
Таким образом, исследования показали, что полупроводниковые приборы в определенных условиях могут регистрировать поля неэлектромагнитной природы, возможно поля кручения [7]. Обозначим некоторые условия регистрации, во-первых, регистрируемая квантовая система должна находиться в неравновесном состоянии, во-вторых, большая плотность рекомбинационных уровней полупроводника, в-третьих, отношение времени сбора зарядов полупроводника и среднего времени удержания в зоне рекомбинации должны соответствовать определенному значению. Что интересно, генерируемое поле организует случайные и независимые процессы. Это было заметно по уменьшению дисперсии интегрального спектра фонового излучения, в измерениях в режиме вращения относительно статичного режима.
Среди новых перспективных полупроводниковых материалов, пригодных для создания на их основе эффективных фотоэлектрических преобразователей солнечной энергии следует выделить полупроводниковое соединение с структурой халькопирита CuInSe2 , имеющее ширину запрещенной зоны Eg = 1,04 эВ при температуре Т = 300 К и большой коэффициент оптического поглощения α ~ 105 см-1 . Добавление к этому соединению атомов цинка приводит к изменению ширины запрещенной зоны полученного полупроводникового материала в сторону увеличения. При этом его спектральная фоточувствительность сдвигается в коротковолновую область (в сторону максимума энергии спектра солнечного излучения). Поэтому использование полученного материала в качестве светопоглощающего слоя солнечных элементов позволяет повысить эффективность солнечных элементов по сравнению с элементами, созданными на основе пленок CuInSe2 .
В настоящей работе приведены результаты исследований времени жизни не основных носителей заряда, температурных зависимостей электропроводности и края оптического поглощения полученных методом двухстадийной селенизации полупроводниковых пленок Cu (In,Zn) Se2 с концентрацией атомов цинка NZn = 4,7 ат.% и обогащенных атомами индия (соотношение между атомами металлов Cu/In = 0,57).
Процесс получения плёнок включал в себя нанесение на подложку методом термического напыления слоёв меди, индия, селенида цинка и последующий двухступенчатый температурный отжиг в парах селена в атмосфере инертного газа (азот). В качестве подложек использовалось боросиликатное стекло. Пленки Cu-In толщиной 0,5-0,7 мкм наносились на подложку, на которую предварительно был осажден слой ZnSe. На первой стадии селенизации подложки с предварительно нанесенными слоями Cu-In-ZnSe выдерживались при температуре 240-260 0 С в течение 20-30 минут а на второй стадии температура составляла 520-530 0 С, а время выдержки составляло 15-20 минут. В результате селенизации получены поликристаллические пленки р-типа проводимости толщиной 1,5-2,0 мкм. Коэффициент термоэдс пленок при комнатной температуре составлял 100 мкВ/К.
Время жизни не основных носителей заряда в исследуемых пленках (τ) было определено методом затухания фотопроводимости при возбуждении пленок прямоугольными импульсами света с длиной волны λ = 0,635 мкм. В качестве источника света применялся полупроводниковый лазерный модуль типа МЛН-3, работающий в импульсном режиме с быстродействием < 0,5 мкс. Для получения электрических контактов к пленкам применялся токопроводящий клей “Leit-C", с помощью которого к исследуемой пленке приклеивались медные проводники. Предварительными исследованиями было установлено, что полученные таким способом электрические контакты являются омическими в температурном интервале 80-400 К. Ширина запрещенной зоны исследуемых пленок Еg определялась по фундаментальному краю оптического поглощения по стандартной методике.
В результате исследований было установлено, что с повышением температуры время жизни не основных носителей заряда в пленках уменьшается и в температурном интервале ∆Т= 80 - 300 К величина τ изменяется от τ = 3,5·10-4 с. при Т = 80 К до τ = 0,6·10-4 с. при Т= 300 К.
При повышении концентрации атомов цинка ширина запрещенной зоны увеличивается с скоростью dEg /dT = 2,4·10-2 эВ/ат.%. Для исследуемых пленок c концентрацией атомов цинка NZn = 4,7 ат.% ширина запрещенной зоны Eg = 1,146 эВ при Т=300 К (Рис.1).
|
|
Рис.4. Спектральная зависимость коэффициента поглощения для пленок с концентрацией Nzn = 4.7 ат.%.
Рис.5. Температурная зависимость электропроводности для пленки с концентрацией атомов цинка Nzn =4.7 ат.%.
Т=300 К
Для определения энергий активации энергетических уровней созданных в запрещенной зоне собственными дефектами и идентификации типов дефектов были исследованы температурные зависимости электропроводности пленок в температурном интервале
∆Т = 80-400 К (Рис.2). Температурные зависимости регистрировались при повышении температуры образцов после предварительного охлаждения их до температуры жидкого азота. Установлено, что электропроводность пленок при изменении температуры изменяется в соответствии с известной зависимостью σ = σо exp (-∆Ea /kT) где ∆Ea - энергия активации соответствующего энергетического уровня в запрещенной зоне, определяющего изменение электропроводности в заданном температурном интервале.
Значения энергий активации определялись по наклону прямолинейных участков в построенных зависимостях ln σ = f (1000/T). Энергии активации для исследованных пленок с концентрацией атомов цинка NZn = 4,7 ат.% составляла ∆Ea 1 = 74 мэВ в температурном интервале ∆Т = 200-400 К и ∆Ea 2 = 15 мэВ в температурном интервале ∆Т = 100-150 К. Так как исследовались пленки с избытком атомов индия, то наиболее вероятными дефектами в пленках являются вакансии меди (VCu ) и дефекты замещения типа атом индия на месте атома меди (InCu ) и атом цинка на месте атома меди (ZnCu ). В результате проведенных исследований с учетом литературных данных о существующих дефектах и их энергиях активации в полупроводниковом соединении CuInSe2 [1] можно предположить, что энергия активации ∆Ea 1 соответствует дефектам ZnCu а энергия активации ∆Ea 2 соответствует дефектам VCu .
Таким образом, в результате проведенных исследований установлено, что инкубационный период роста кристаллитов фуллерита зависит от толщины покрывающего слоя олова и составляет 12 и 22 месяца при dSn = 50 нм и dSn = 200 нм соответственно. Источником энергии образования кристаллитов являются внутренние механические напряжения, рост происходит по диффузионно-дислокационному механизму.
Литература
1. Мельник И.А. // Изв. вузов. Физика, 2004, №5, с. 19-26.
2. Melnik I. A. // New Energy Technologies, 2005, №1, p.58-69.
3. Мельник И.А. // Заявка на изобретение №2006136319, ФИПС, 2006.
4. Мельник И.А. // Изв. вузов. Физика, 2006, №5, с.32-38.
5. Еремин В.К., Строкан Н.Б., Тиснек Н.И. // Физика полупроводников, вып.11, 1974, с.2224-2227.
6. Панчелюга В. А, Шноль С.Э. // VI Международная крымская конференция "Космос и Биосфера". Тезисы докладов 26 сентября -1 октября 2005, Крым, Партенит.
7. Акимов А.Е., Тарасенко В.Я. // Изв. вузов. Физика., 1992, №3, с.5-12.55 с.