Реферат: Механізм та біологічне значення запалення
1) стадію прилипання (чи прикріплення) фагоцита до об'єкта,
2) стадію поглинання об'єкта,
3) стадію внутрішньоклітинного руйнування поглиненого об'єкта.
Прилипання фагоцитів до об'єкта в окремих випадках обумовлено існуванням на мембрані фагоцитів рецепторів для молекул, що входять до складу мікробної стінки (наприклад, для вуглеводу зимозана), чи для молекул, що з'являються на поверхні власних кліток, що гинуть. Однак у більшості випадків прилипання фагоцитів до мікроорганізмів, що проникнули в організм, здійснюється при участі так званих опсонінів - сироваткових факторів, що попадають у вогнище запалення в складі запального ексудата. Опсоніни з'єднуються з поверхнею клітки мікроорганізму, після чого до неї легко прилипає мембрана фагоцита. Головними опсонінами є імуноглобуліни і фрагмент С-комплемента. Властивостями опсонінів володіють також деякі плазмені білки (наприклад, С-реактивний білок) і лізоцим.
Феномен опсонизації можна пояснити тим, що молекули опсонінів розташовують щонайменше двома ділянками, один із яких зв'язується з поверхнею часточки, що атакується, а іншої - з мембраною фагоцита, з'єднуючи в такий спосіб обидві поверхні один з одним. Імуноглобуліни класу G, наприклад, зв'язуються своїми Fab-фрагментами з антигенами мікробної поверхні, тоді як Fc-фрагменти цих антитіл - з поверхневою мембраною фагоцитів, на якій маються рецептори для Fc-фрагментів Ig.
Процес поглинання можна розглядати у відомому змісті як продовження прилипания. У ході поглинання фагоцит утворить псевдоподії, що оточують об'єкт, прилипаючи до його покритого опсонінамиами поверхні. Коли мембрана псевдоподій покриє всю поверхню об'єкта, останній виявляється усередині "мішка", утвореного мембраною фагоцитуючої клітки. При цьому сам мішок, називаний фагосомой, виявляється усередині цитоплазми фагоцита. Подальше руйнування поглинених часток відбувається усередині фагосоми - поза внутрішнім середовищем клітки.
Якщо мова йде про живі мікроорганізми, а фагоцити здатні захоплювати живі мікроорганізми, то спочатку вони повинні бути убиті. У лейкоцитах діють два бактерицидних механізми:
1) залежний від кисню
2) не залежний від кисню.
Залежний від кисню бактерицидний фактор зв'язаний з утворенням активних метаболітів кисню. Продукція цих речовин починається після контакту фагоцитів з опсонізированими бактеріями. Саме в цей час фагоцити, що у звичайних умовах використовують енергію анаеробного гліколізу, починають посилено поглинати кисень, що позначають терміном респіраторний вибух.
Виникнення респіраторного вибуху обумовлено активацією цитопламатичної НАДФН-оксидази, що каталізує одноелектронне відновлення молекули кисню до супероксидного радикального аніона, "відбираючи" електрон від відновленого піридинового нуклеотиду НАДФН "респіраторного вибуху, що витрачаються в час," запаси НАДФН починають негайно заповнюватися посиленим окислюванням глюкози через гексозомонофосфатний шунт.
Велика частина утворюваних при відновленні ПРО2 супероксидних аніонів ПРО2 - піддається дисмутації до Н2 ПРО2 .
Деяка частина молекул Н2 ПРО2 взаємодіє в присутності чи заліза міді із супероксидним аніоном з утворенням надзвичайно активного гідроксильного радикала ВІН- .
Цитоплазматична НАДФ-оксидаза активується в місці контакту фагоцита з мікробом, а утворення супероксидних аніонів відбувається на зовнішній стороні мембрани лейкоцитів, поза внутрішнім середовищем клітки. Процес продовжується і після завершення утворення фагосоми, унаслідок чого усередині її створюється висока концентрація бактерицидних радикалів. Проникаючі усередину цитоплазми фагоцита радикали нейтралізуються ферментами супероксиддисмутазой і каталазой.
Система утворення бактерицидних метаболітів кисню діє у всіх професійних фагоцитах. У нейтрофілах разом з нею діє ще одна могутня бактерицидна система – система міелопероксидази (подібна з нею лероксидазна система мається також у еозинофілів, але її немає в моноцитів і макрофагів).
Міелопероксидаза - фермент, що міститься в азурофільних гранулах нейтрофілів, катализує реакцію між іоном галогену (звичайно хлору) і перекисом водню, що приводить до утворення хлорноватистої кислоти (гіпохлоритного аніона).
Гіпохлорит робить виражена бактерицидна дія сам по собі. Крім того, він може реагувати з чи амонієм амінами, утворити бактерицидні хлораміни.
Незалежний від кисню бактерицидний механізм зв'язаний з дегрануляціею - надходженням усередину фагосоми бактерицидних речовин, що містяться у внутрішньоклітинних гранулах фагоцитів.
Коли утворення фагосоми завершується, до неї впритул наближаються гранули цитоплазми фагоцитів. Мембрана гранул зливається з мембраною фагосоми, і вміст гранул вливається усередину фагосоми. Думають, що стимулом до дегрануляції є збільшення цитозольного Са2+ , концентрація якого зростає особливо сильно поблизу фагосоми, де розташовуються органели, що накопичують кальцій.
Цитоплазматичні гранули всіх облігатних фагоцитів містять велика кількість біологічно активних речовин, здатних убивати і переварювати мікроорганізми й інші поглинені фагоцитами об'єкти. У нейтрофілах, наприклад, мається 3 типи гранул:
1) секреторні пухирці;
2) первинні (азурофільні);
3) вторинні (специфічні) гранули.
Найбільше легко мобілізуємі секреторні пухирці полегшують вихід нейтрофілів із судин, їхню міграцію в тканинах. Знищують і руйнують поглинені частки речовини азурофільних і специфічних гранул. В азурофільних гранулах, крім уже згаданої міелопероксидази, містяться діючі незалежно від кисню низькомолекулярні бактерицидні пептиди дефенсини, слабка бактерицидна речовина лізоцим і безліч ферментів, що руйнують; у специфічних гранулах лізоцим і білки, що зупиняють розмноження мікроорганізмів, зокрема, лактоферрин, связ'ивающий необхідне для життєдіяльності мікроорганізмів залізо.
На внутрішній мембрані специфічних і азурофільних гранул знаходиться протонний насос, що переносить водневі іони з цитоплазми фагоцита усередину фагосоми. У результаті рН середовища у фагосомі знижується до 4-5, що викликає загибель багатьох мікроорганізмів усередині фагосоми. Після того як мікроорганізми гинуть, вони руйнуються усередині фагосоми за допомогою кислих гідролаз азурофільних гранул.
До числа важливих бактерицидних факторів, що діють в активованих макрофагах, варто віднести і продукцію оксиду азоту (NО), що здійснюється за допомогою індуцибільної NO-синтази. Фермент цей активується γ-інтерфероном, фактором некрозу пухлин, Мул-1-бета й іншими запальними цитокінами. NО діє цитостатично на пухлинні клітки, бактерії, паразити, віруси, інгібуя активність багатьох ферментів, що беруть участь у синтезі білків і нуклеїнових кислот.
Не всі живі мікроорганізми гинуть усередині фагоцитів. Деякі, наприклад, збудники туберкульозу зберігаються, виявляючись при цьому "відгородженими" мембраною і цитоплазмою фагоцитів від протимікробних лік.
Активовані хемоаттрактантами фагоцити здатні вивільняти уміст своїх гранул не тільки усередину фагосоми, але і в позаклітинний простір. Це відбувається під час так називаного незавершеного фагоцитозу - у тих випадках, коли по тим чи іншим причинам фагоцит не може поглинути об'єкт, що атакується, наприклад, якщо розміри останнього значно перевищують розміри самого чи фагоцита якщо об'єктом фагоцитозу є комплекси антиген-антитіло, що знаходяться на плоскій поверхні судинного ендотелія. При цьому вміст гранул і продукуємі фагоцитами активні метаболіти кисню впливають і на об'єкт атаки, і на тканині організму хазяїна.
Ушкодження тканин хазяїна токсичними продуктами фагоцитів стає можливим не тільки в результаті незавершеного фагоцитозу, але і після загибелі чи лейкоцитів унаслідок руйнування мембрани фагосоми самими поглиненими часточками, наприклад часточками чи кремнію кристалами сечової кислоти.