Реферат: Металлы жизни. Марганец
Кислотные признаки соединения Mn (II) проявляют при взаимодействии с однотипными производными щелочных металлов. Так, нерастворимый в воде Mn(CN)2 (белого цвета) за счёт комплексообразования растворяется в присутствии KCN:
4KCN + Mn(CN)2 = K4 [Mn(CN)6 ] (гексацианоманганат (II))
Аналогичным образом протекают реакции:
4KF + MnF2 = K4 [MnF6 ] (гексафтороманганат (II))
2KCl + MnCl2 = K2 [MnCl4 ] (тетрахлороманганат (II))
Большинство манганатов (II) (кроме комплексных цианидов) в разбавленных растворах распадается.
При действии окислителей производные Mn (II) проявляют восстановительные свойства. Так, в щелочной среде Mn(OH)2 легко окисляется даже молекулярным кислородом воздуха, поэтому осадок Mn(OH)2 , получаемый по обменной реакции, быстро темнеет:
+2 +4
6Mn(OH)2 + O2 = 2Mn2 MnO4 + 6H2 O
В сильнощелочной среде окисление сопровождается образованием оксоманганатов (VI) - производных комплекса MnO4 2- :
+2 +5 +6 -1
3MnSO4 + 2KClO3 + 12KOH = 3K2 MnO4 + 2KCl + 3K2 SO4 + 6H2 O
сплавление
Сильные окислители, такие, как PbO2 (окисляет в кислой среде), переводят соединения Mn (II) в оксоманганаты (VII) - производные комплекса MnO- 4 :
+2 +4 +7 +2 +2
2MnSO4 + 5PbO2 + 6HNO3 = 2HMnO4 + 3Pb(NO3 )2 + 2PbSO4 + 2H2 O
Последняя реакция используется в аналитической практике как качественная реакция на соединения марганца.
6. Соединения Mn (III)
При нагревании любого оксида или гидроксида марганца до 10000 C образуются чёрные кристаллы гаусманита Mn3 O4 . Это шпинель Mn(II)Mn(III)2 O4 . При окислении Mn(OH)2 на воздухе образуется гидратированный оксид, при высушивании которого получается MnO(OH)2 .
Ион трёхвалентного марганца в растворе можно получить электролитическим или персульфатным окислением Mn2+ , а также при восстановлении MnO- 4 . В высоких концентрациях его получить нельзя, поскольку он восстанавливается водой. В слабокислых растворах ярко выражена тенденция к гидролизу и диспропорционированию:
2Mn3+ + 2H2 O = Mn2+ + MnO2 (тв.) + 4H+ K » 109
Темно-коричневый кристаллический ацетилацетонат трехвалентного марганца легко получается при окислении Mn2+ кислородом или хлором в щелочном в присутствии ацетилацетона.
Основной ацетат с трехкоординированным атомом кислорода в центре, который получают действием KMnO4 на ацетат Mn2+ в уксусной кислоте, окисляет олефины до лактонов. Он используется в промышленности для окисления толуола в фенол.
Комплексы трех- и четырехвалентного марганца играют, по-видимому, важную роль в фотосинтезе, где выделение кислорода зависит от наличия марганца.
7. Соединения марганца в биологических системах
Марганец весьма интересен в биохимическом отношении. Точные анализы показывают, что он имеется в организмах всех растений и животных. Содержание его обычно не превышает тысячных долей процента, но иногда бывает значительно выше. Например, в листьях свёклы содержится до 0,03%, в организме рыжих муравьёв - до 0,05%, а в некоторых бактериях даже до нескольких процентов Mn. Опыты с кормлением мышей показали, что марганец является необходимой составной частью их пищи. В организме человека больше всего марганца (до 0,0004%) содержит сердце, печень и надпочечники. Влияние его на жизнедеятельность, по-видимому, очень разнообразно и сказывается главным образом на росте, образовании крови и функции половых желёз.
В избыточных против нормы количествах марганцовые соединения действуют как яды, вызывая хроническое отравление. Последнее может быть обусловлено вдыханием содержащей эти соединения пыли. Проявляется оно в различных расстройствах нервной системы, причём развивается болезнь очень медленно.
Марганец принадлежит к числу немногих элементов, способных существовать в восьми различных состояниях окисления. Однако в биологических системах реализуются только два из этих состояний: Mn (II) и Mn (III). Во многих случаях Mn (II) имеет координационное число 6 и октаэдрическое окружение, но он может также быть пяти- и семикоординационным (например, в [Mn(OH)2 ЭДТА]2- ). Часто встречающаяся у соединений Mn (II) бледно-розовая окраска связана с высокоспиновым состоянием иона d5 , обладающим особой устойчивостью как конфигурация с наполовину заполненными d‑орбиталями. В неводном окружении ион Mn (II) способен также к тетраэдрической координации. Координационная химия Mn (II) и Mg (II) обладает известным сходством: оба катиона предпочитают в качестве лигандов сравнительно слабые доноры, как, например, карбоксильную и фосфатную группы. Mn (II) может заменять Mg (II) в комплексах с ДНК, причем процессы матричного синтеза продолжают протекать, хотя и дают иные продукты.
Незакомплексованный ион Mn (III) неустойчив в водных растворах. Он окисляет воду, так что при этом образуются Mn (II) и кислород. Зато многие комплексы Mn (III) вполне устойчивы (например, [Mn(C2 O4 )3 ]3- - оксалатный комплекс); обычно октаэдрическая координация в них несколько искажена вследствие эффекта Яна - Теллера.
Известно, что фотосинтез в шпинате невозможен в отсутствие Mn (II); вероятно, то же относится и к другим растениям. В организм человека марганец попадает с растительной пищей; он необходим для активации ряда ферментов, например дегидрогеназ изолимонной и яблочной кислот и декарбоксилазы пировиноградной кислоты.
8. Применение
Марганец играет важную роль и находит широкое применение в металлургии как добавка к стали, улучшающая её свойства. Поскольку марганец обладает большим сродством к сере, чем железо (DG0 f для MnS и FeS соответственно равно -218 и ‑101 кДж /моль ), то при введении ферромарганца в расплавленную сталь растворённая в ней сера связывается в сульфид MnS, который не растворяется в металле и уходит в шлак. Тем самым предотвращается образование при затвердевании стали прослоек между кристаллами из сульфида железа, которые значительно понижают прочность стали и делают её ломкой, особенно при повышенных температурах. Не прореагировавший с серой марганец остаётся в стали, что ещё более улучшает её свойства. Кроме серы, марганец связывает растворённый в стали кислород, присутствие которого также нежелательно.
Марганцевая сталь имеет повышенную стойкость к ударам и истиранию (содержание в ней марганца в зависимости от марки составляет 0,3 -14%). В технике используют много других сплавов марганца. Из сплавов Гейслера (Al - Mn) изготавливают очень сильные постоянные магниты. Манганин (12% Mn, 3% Ni, 85% Cu) обладает ничтожно малым температурным коэффициентом электросопротивления и другими ценными электротехническими свойствами. Благодаря использованию манганиновых сопротивлений в электроизмерительных приборах при определении разности потенциалов Dj достигается точность 10-4 % и более высокая. Поскольку экспериментальные методы определения многих физико-химических параметров основаны на измерении Dj, точность установленных физико-химических констант в значительной степени обусловлена исключительным свойством манганина.
Диоксид марганца MnO2 широко используют в качестве окислителя (деполяризатора) в химических источниках тока. Перманганат калия применяют как окислитель во многих органических синтезах, в аналитической химии (перманганатометрия), в медицине. Соединения марганца входят в состав многих катализаторов, в частности, содержатся в ускорителях “высыхания” масляной краски (точнее масло, входящее в состав краски, не высыхает, а окисляется кислородом воздуха, образуя при этом полимер).
ЛИТЕРАТУРА:
1. Ахметов Н.С., Общая и неорганическая химия. - М.: Высшая школа, 1989
2. Некрасов Б.В., Учебник общей химии. - М.: Химия, 1981