Реферат: Металлы жизни
Со щелочами они реагируют только при достаточно сильном и длительном нагревании:
Mn(OH)2 + 4OH- = [Mn(OH)6 ]4-
Из гидроксоманганатов (II) выделены в свободном состоянии K4 [Mn(OH)6 ], Ba2 [Mn(OH)6 ] (красного цвета) и некоторые другие. Все они в водных растворах полностью разрушаются. По этой же причине ни металлический марганец, ни его оксид и гидроксид в обычных условиях со щелочами не взаимодействуют.
Оксид MnO (серо-зелёного цвета, т.пл. 17800 C) имеет переменный состав (MnO-MnO1,5 ), обладает полупроводниковыми свойствами. Его обычно получают, нагревая MnO2 в атмосфере водорода или термически разлагая MnCO3 .
Поскольку MnO с водой не взаимодействует, Mn(OH)2 (белого цвета) получают косвенным путём - действием щелочи на раствор соли Mn (II):
MnSO4 (р) + 2KOH (р) = Mn(OH)2 (т) + K2 SO4 (р)
Кислотные признаки соединения Mn (II) проявляют при взаимодействии с однотипными производными щелочных металлов. Так, нерастворимый в воде Mn(CN)2 (белого цвета) за счёт комплексообразования растворяется в присутствии KCN:
4KCN + Mn(CN)2 = K4 [Mn(CN)6 ] (гексацианоманганат (II))
Аналогичным образом протекают реакции:
4KF + MnF2 = K4 [MnF6 ] (гексафтороманганат (II))
2KCl + MnCl2 = K2 [MnCl4 ] (тетрахлороманганат (II))
Большинство манганатов (II) (кроме комплексных цианидов) в разбавленных растворах распадается.
При действии окислителей производные Mn (II) проявляют восстановительные свойства. Так, в щелочной среде Mn(OH)2 легко окисляется даже молекулярным кислородом воздуха, поэтому осадок Mn(OH)2 , получаемый по обменной реакции, быстро темнеет:
+2 +4
6Mn(OH)2 + O2 = 2Mn2 MnO4 + 6H2 O
В сильнощелочной среде окисление сопровождается образованием оксоманганатов (VI) - производных комплекса MnO4 2- :
+2 +5 +6 -1
3MnSO4 + 2KClO3 + 12KOH = 3K2 MnO4 + 2KCl + 3K2 SO4 + 6H2 O
сплавление
Сильные окислители, такие, как PbO2 (окисляет в кислой среде), переводят соединения Mn (II) в оксоманганаты (VII) - производные комплекса MnO- 4 :
+2 +4 +7 +2 +2
2MnSO4 + 5PbO2 + 6HNO3 = 2HMnO4 + 3Pb(NO3 )2 + 2PbSO4 + 2H2 O
Последняя реакция используется в аналитической практике как качественная реакция на соединения марганца.
Соединения марганца в биологических системах
Марганец весьма интересен в биохимическом отношении. Точные анализы показывают, что он имеется в организмах всех растений и животных. Содержание его обычно не превышает тысячных долей процента, но иногда бывает значительно выше. Например, в листьях свёклы содержится до 0,03%, в организме рыжих муравьёв - до 0,05%, а в некоторых бактериях даже до нескольких процентов Mn. Опыты с кормлением мышей показали, что марганец является необходимой составной частью их пищи. В организме человека больше всего марганца (до 0,0004%) содержит сердце, печень и надпочечники. Влияние его на жизнедеятельность, по-видимому, очень разнообразно и сказывается главным образом на росте, образовании крови и функции половых желёз.
В избыточных против нормы количествах марганцовые соединения действуют как яды, вызывая хроническое отравление. Последнее может быть обусловлено вдыханием содержащей эти соединения пыли. Проявляется оно в различных расстройствах нервной системы, причём развивается болезнь очень медленно.
Марганец принадлежит к числу немногих элементов, способных существовать в восьми различных состояниях окисления. Однако в биологических системах реализуются только два из этих состояний: Mn (II) и Mn (III). Во многих случаях Mn (II) имеет координационное число 6 и октаэдрическое окружение, но он может также быть пяти- и семикоординационным (например, в [Mn(OH)2 ЭДТА]2- ). Часто встречающаяся у соединений Mn (II) бледно-розовая окраска связана с высокоспиновым состоянием иона d5 , обладающим особой устойчивостью как конфигурация с наполовину заполненными d‑орбиталями. В неводном окружении ион Mn (II) способен также к тетраэдрической координации. Координационная химия Mn (II) и Mg (II) обладает известным сходством: оба катиона предпочитают в качестве лигандов сравнительно слабые доноры, как, например, карбоксильную и фосфатную группы. Mn (II) может заменять Mg (II) в комплексах с ДНК, причем процессы матричного синтеза продолжают протекать, хотя и дают иные продукты.
Незакомплексованный ион Mn (III) неустойчив в водных растворах. Он окисляет воду, так что при этом образуются Mn (II) и кислород. Зато многие комплексы Mn (III) вполне устойчивы (например, [Mn(C2 O4 )3 ]3- - оксалатный комплекс); обычно октаэдрическая координация в них несколько искажена вследствие эффекта Яна - Теллера.
Известно, что фотосинтез в шпинате невозможен в отсутствие Mn (II); вероятно, то же относится и к другим растениям. В организм человека марганец попадает с растительной пищей; он необходим для активации ряда ферментов, например дегидрогеназ изолимонной и яблочной кислот и декарбоксилазы пировиноградной кислоты.
В биологических системах марганец встречается в двух состояниях:Mn2+ и Mn3+ . Марганецвходит в состав ферментов, катализирующих окислительно-восстановительные процессы. Его соединения участвуют в синтезе важного для организма витамина С (аскорбиновая кислота).
Пермарганат калия KMnO4 используется в медицине в виде 5%-ого раствора для обработки обожжённых мест и как кровоостанавливающее средство. Более слабые его растворы употребляются для полоскания рта и горла. Дезинфицирующие свойства растворов пермарганата калия обусловлены его высокими свойствами.
Сульфат марганца MnSO4 был применён для лечения атеросклероза. При этом оказалось, что клинически у больных уменьшались явления атеросклероза сосудов и количество холестерина в крови доходило до нормального.
ЖЕЛЕЗО.
В организме человека железо встречается в виде двух катионов: Fe2+ и Fe3+ . Оно в основном входит в состав гемоглобина, содержащегося в эритроцитах (80% от количества). Таким образом, общее содержание железа определяется главным образом объёмом крови. Кроме того, в организме существует депонированное (запасное) железо в виде высокомолекулярного железосодержащего белка (ферритина), находящегося в клетках печени и селезёнки. Клеточный фонд железа представляет железо клеточных ферментов дыхания, а в мышцах – железо гемоглобина.
Обмен железа между плазмой крови и лимфой происходит при помощи транспортного белка (трансферрина). Одна молекула трансферрина связывает 2 атома железа. Основной путь обмена железа таков: железо плазмы® железо эритроцитов®гемолиз®®железо плазмы.
Обычно среднее содержание железа в организме не превышает 5г. В случае потерь крови потребность в железе превышает его поступление в организм с пищей. При внутривенных инъекциях железо вводится в виде аскорбата, цитрата или коллоидных комплексов с углеводами, т.е. в виде слабо ионизированных соединений.
Из соли железа наибольшую эффективность применения в медицине нашёл сульфат железа (II) (железный купорос) FeSO11 ·7H2 O – кристаллы бледно-зелёного цвета, желтеющие при длительном хранении на воздухе. Он используется при лечении анемии (малокровии), зависящей от дефицита железа в организме, а также при слабости и истощении организма. Для этой же цели употребляются восстановленное железо Fe и карбонат железа Fe