Реферат: Методические указания по микропроцессорным системам
Логическое объединение (рис. 1.4, а) - выполняется с помощью схемы ИЛИ, на входы которой поступают сигналы от разных источников информации, предварительно проклапанированные сигналами управления на входах схем И.
Рис. 1.4. Способы подключения устройств к общей шине
Объединение с помощью схем с открытым коллектором (рис. 1.4, б) характеризуется электрическим соединением выходов нескольких логических элементов. Часто этот способ называют «монтажным ИЛИ» или «монтажным И».
Объединение с использованием схем с тремя состояниями (рис. 1.4, в) отличается именно таким характером нагрузки. В отличие от обычных ключевых схем здесь возможен третий режим, при котором оба транзистора одного каскада (VT1 и VT2 или VT3 и VT4) закрыты. В этом случае со стороны выхода каскад обладает высоким сопротивлением и практически не влияет на состояние общей шины. Если в состоянии высокого сопротивления будут находиться оба каскада, то общая шина может использоваться произвольно любыми внешними по отношению к МП устройствами. Этот способ широко используется при организации прямого доступа к памяти и при построении мультипроцессорных систем.
Кроме широко известных устройств внешней (ЗУ команд и ЗУ данных) и внутренней (РОН) памятей, для которых характерен адресный принцип общения, в МП МПС обычно предусматривается возможность работы с так называемой магазинной памятью (стеком), при обращении к которой не требуется указание адреса. Возможная организация магазинной памяти представлена на рис. 1.5.
Рис. 1.5. Организация стека
Выборка одной из ячеек матрицы памяти осуществляется через дешифратор адреса (ДСА) по адресу, находящемуся на реверсивном счетчике адреса, называемом указателем стека (УС). Начальное значение адреса поступает в УС на вход А. В процессе работы состояние УС при каждой записи уменьшается, а при каждом чтении увеличивается на единицу. Управление режимами записи и чтения выполняет местный блок управления (МБУ).
При записи входное слово Х поступает на регистр слов (PC) и записывается в матрицу памяти по адресу, который в данный момент был установлен в УС. С небольшой задержкой после записи информации содержимое УС уменьшается на единицу, подготавливаясь к следующей записи, так что УС постоянно указывает на пустую ячейку.
При чтении МБУ сначала вырабатывает сигнал, увеличивающий содержимое УС на единицу, а затем - сигнал чтения информации из матрицы памяти. В результате на выходных цепях стека появится слово Х, которое было записано последним. Принцип работы стека может быть сформулирован как «последним записан – первым прочитан» (Last In First OUT - LIFO). Ввиду отсутствия в коде команд записи (чтения) адресного поля уменьшается разрядность этих команд и время их выполнения.
В МПС используются два вида стека: встроенный и автономный. Встроенный стек полностью размещается на кристалле МП. Емкость (глубина) стека здесь не может быть большой (обычно 16-32 слова). При организации автономного стека в качестве матрицы памяти используется внешнее по отношению к МП ОЗУ, а на кристалле располагается лишь УС с разрядностью, равной разрядности шины адреса; глубина стека может быть равна адресуемой емкости памяти (обычно 64 К). Для компенсации снижения быстродействия в некоторых МП с автономным стеком реализованы аппаратная запись и восстановление при прерываниях содержимого ПС, аккумулятора и регистра состояния.
Работа МПС сопровождается интенсивным обменом информацией между МП, ЗУ, УВВ. Эффективность решения задач МПС в значительной степени определяется организацией этого обмена и структурой связи между МП, памятью и УВВ. Для организации обмена между указанными устройствами вводится понятие интерфейса – это система шин, вспомогательной аппаратуры и алгоритмов, реализованных на этой аппаратуре. В функции интерфейса входят: дешифрация адреса устройств, синхронизация обмена информацией, согласование форматов слов, дешифрация кода команды, связанной с обращением к памяти или УВВ, электрическое согласование сигналов.
Сложность задач, возлагаемых на интерфейс, а также недостаточная мощность буферных схем, входящих в состав БИС МП, привели к распределению средств интерфейса между различными устройствами:
- устройством управления памятью и вводом-выводом, входящим в состав МП;
- непосредственно интерфейсным устройством, являющимся промежуточным звеном между МП, памятью и УВВ;
- специализированными устройствами управления (контроллерами) УВВ.
Различают следующие способы организации связи между МП и УВВ в МПС: программный обмен данными по командам условного перехода; обмен данными по сигналам прерывания; обмен данными в канале прямого доступа в память; подключение устройств ввода-вывода к МП.
При программном обмене данными по командам условного перехода МП программным путем должен определить, готово ли периферийное устройство к выполнению операций ввода-вывода до того, как начнется программная передача данных. Внешнее устройство должно иметь аппаратурные средства для выработки информации о внутреннем состоянии статусной информации. МП считывает эту информацию, передает ее во внутренний регистр-аккумулятор, анализирует и на основе результата анализа принимает решение о готовности устройства (рис.1.6).
МП может находиться в режиме программного ожидания (готовности) внешнего устройства, выполняя команды блоков 1 и 2. После обнаружения состояния готовности МП передает данные по командам блоку 3, а затем приступает к работе по продолжению основной программы.
Рис. 1.6. Алгоритм программного обмена
На рис. 1.7 приведен пример обмена данными по командам условного перехода. Аналого-цифровой преобразователь (АЦП) при передаче данных имеет трехуровневые выходные каскады, передача данных с которых осуществляется по сигналу “Разрешение выдачи” (РВ). По сигналу “Начало преобразования” (НП) АЦП начинает преобразования мгновенной амплитуды входного аналогового сигнала в восьмиразрядный код. По окончанию преобразования выдается управляющий сигнал “Конец преобразования” (КП).
Сигналы НП, КП и РВ считываются МП из байтового выходного регистра данных. Сигналы Д7 – Д0 имеют правильное значение, если соблюдена последовательность выдачи управляющих сигналов НП, КП и РВ согласно временной диаграмме. Сигнал с дешифратора адреса ДСА
Рис. 1.7. Схема подключения АЦП к МП при программном вводе данных
вместе с сигналом операции МП Чт/Зп по сигналу импульса синхронизации С определяет генерацию необходимого управляющего сигнала. По сигналам АНП =АРВ = 1 осуществляется запуск АЦП; по сигналам АРВ = АКП = 1 – считывание и ввод в МП значения сигнала КП. Этот сигнал через трехуровневый каскад вводится в МП по шине Д7. Поэтому команда “Условный переход по знаку результата” определит либо окончание преобразования (КП=1), либо необходимость перехода к новому циклу анализа (КП=0). При сигнале КП=1 командой “Прочитать данные по адресу АРВ” осуществляется ввод информации с АЦП в МП.
Для организации обмена данными по сигналам прерывания от внешних устройств в МП должны быть предусмотрены специальные аппаратурные средства анализа состояния внешних устройств. Если они обнаруживают готовность к обмену какого-либо внешнего устройства, то сигнализируют об этом блоку управления МП, который завершает текущую операцию, передает на хранение в память всю информацию внутренних регистров данных и управления и переходит к подпрограмме обслуживания прерывания. Основная часть этой подпрограммы – команды передачи данных между МП и конкретным внешним устройством. В конце нее имеются программы восстановления состояния МП, которое существовало к началу прерывания.
Если необходимо осуществить обмен между внешним устройством и памятью, то нет необходимости пересылать данные через МП, так как в противном случае затраты времени МП будут очень большими. Можно ввести в МПС контроллер прямого доступа в память, который берет на себя управление передачей. Построение канала ПДП является альтернативой программному обмену, поэтому и в данном случае справедливы общие закономерности балансировки программно-аппаратурных средств. Средства канала ПДП могут быть подключены параллельно процессору (рис.1.8, а), с передачей функции арбитража ОЗУ.
Рис. 1.8. Схема подключения КПД к ОЗУ в МПС