Реферат: Методика изучения функций в школьном курсе математики
Пример. На рисунке изображён график функции -2. Пользуясь этим чертежом изобразить от руки график функции . Проверить правильность сделанного эскиза: вычислить значения функции при и отметить эти точки графика. Каким преобразованием можно перенести график функции в график функции ? Цель задания – согласовать зрительный образ графика, его геометрические свойства и форму.
Пример: В таблице приведены значения величин, равномерно меняющейся со временем. Однако за счёт неизбежных погрешностей в измерениях нет возможности строго выдерживать заданный режим, заметны небольшие отклонения от равномерности. Указать закон изменения скорости в заданном промежутке и отклонение от него, имеющееся в таблице.
t, мин | 2 | 3 | 4 | 5 | 6 |
,км/ч | 20 | 30,1 | 39,8 | 50 | 60,1 |
Цель – пропедевтика систематической работы над приближёнными вычислениями, формирование полноценных представлений о приложениях математики.
Изучение функции в классе элементарных функций.
Элементарные функции: целые, рациональные, степенная, показательная, логарифмическая, тригонометрические и их комбинации. В классе элементарных функций имеются две группы операций:
1) арифметические;
2) операции композиции и обращения функций.
Введение арифметических операций над числовыми функциями неявно. По существу происходит перенос действий из одной области в другую неосознанно. Решение заданий на сравнение значения и или аналогичных значений для других одноименных функциональных и числовых операций позволит осознать действие операций.
Пример:
a) Даны многочлены и .Вычислить сумму этих многочленов при x=0,5
b) Рациональное выражение можно представить в виде
.
Пользуясь таким представлением, найти разность функций
и
в точках .
c) Вычислить значение функции при , пользуясь таблицами Брадиса (или компьютером).
Наводящий вопрос : каким из двух способов вычисления значений данного выражения проще провести выкладки?
Целесообразно при изучении графиков функций рассмотреть графическую иллюстрацию функций вида
, ,
используя построения по точкам и учитывая простейшие особенности тех функций, которые составляют формулу данной функции.
Изучение операций второй группы вводятся посредством явного определения. Каждая из этих операций используется в изучении теоретического материала: композиция функций – сложная функция.
Понятие обратной функции, можно отнести к числу важнейших общих понятий в составе функциональной линии. При изучении выясняется зависимость её монотонности от монотонности её исходной функции.
Понятие непрерывности используется при построении графиков и способствует формированию понятия. Понятие непрерывности используется при изучении квадратного корня, при определении показательной функции, при рассмотрении графического метода решение уравнений и неравенств.
При изучении функций в X-XI классах большее предпочтение отдаётся аналитическому исследованию, и схема изучения функции выглядит следующим образом:
1) Рассмотреть подводящую задачу;
2) Сформулировать определение функции;
3) Провести аналитическое исследование свойств функции;
4) Построить (на основе данных аналитического исследования) график функции; в целях более точного его построения составить таблицу " характерных" значений функции и построить соответствующие графики;
5) Рассмотреть задачи и упражнения на применение изученных свойств функции.