Реферат: Методика обучения математике как учебный предмет. Принципы построения курса математики в начальной школе.
При формировании у детей представлений о вычитании можно условно ориентироваться на следующие предметные ситуации: 1) уменьшение данного предметного множества на несколько предметов; 2) уменьшение множества, равночисленного данному, на несколько предметов; 3) сравнение двух предметных множеств.
В процессе выполнения предметных действий у младших школьников формируется представление о вычитании как о действии, которое связано с уменьшением количества предметов.
Число и цифра 0.
Число нуль является характеристикой пустого множества, т.е. множества, не содержащего ни одного элемента. Для того, чтобы учащиеся представили себе такое множество, можно использовать различные методические приёмы.
Один приём связан с установлением соответствия между числовой фигурой и цифрой, обозначающей количество предметов. Этим подходом можно воспользоваться до изучения сложения и вычитания, на этапе формирования у учащихся представлений о количественном числе.
Другой методический приём знакомит учащихся с нулём как результатом вычитания. Для этой цели им предлагаются предметные ситуации, которые они сначала описывают, а затем записывают свой рассказ числовыми равенствами.
В М1М число 0 вводится, как результат операции 1–1, при таком введении у детей может сложиться неправильное представление о числе 0. Поэтому следует рассмотреть как можно больше таких случаев (2–2, 3–3 и др.).
Можно предложить задания с формулировкой «Что изменилось?» и изображением количественной и пустой совокупностей предметов.
Возможно познакомить детей с числом нуль как с компонентом арифметического действия, предложив задание с формулировкой «Что изменилось» и с двумя одинаковыми совокупностями предметов. 4=4, 4+0=4 и 4–0=4.
Переместительное свойство сложения.
В начальном курсе учащиеся знакомятся с коммутативностью сложения, называя его «переместительным свойством сложения». Для его разъяснения могут быть использованы действия с предметными множествами, сравнение числовых равенств, в которых переставлены слагаемые, сравнение суммы длин одинаковых отрезков.
При формировании у детей представлений о смысле сложения полезно предлагать им такие ситуации для предметных действий, при выполнении которых они сами подмечают закономерность, связанные с переместительным свойством сложения. Например: «на одной тарелке 4 апельсина, на другой – 3»; «сколько апельсинов на обеих тарелках?»; «на одной тарелке 3 апельсина, на другой – 4»; «сколько апельсинов на обеих тарелках?».
Возможен и другой вариант моделирования переместительного свойства сложения: Т=▲▲▲ Т+К=▲▲▲■■
К=■■ К+Т=■■▲▲▲
Взаимосвязь компонентов действий сложения и вычитания.
В основе усвоения взаимосвязи между компонентами и результатами сложения и вычитания лежит осознание учащимися предметного смысла этих действий. При этом следует учитывать, что особую трудность для некоторых детей представляет вычленение и удаление части множества, т.е. осознание тех предметных действий, которые связаны со смыслом вычитания.
В исследовании Г.Г. Микулиной было выявлено, что значительная часть учащихся при выполнении предметных действий, связанных с вычитанием, фиксирует скорее пространственное отделение, разъединение двух множеств, чем вычленение и удаление части из целого.
Рассмотрим некоторые методические приёмы, в которых учитываются описанные выше психологические особенности младших школьников:
Работая у доски с рисунками и дидактическими пособиями, полезно сначала предложить ученику показать предметные совокупности, с которыми он действует, а затем уже назвать число предметов в них.
Выполняя задания с рисунками, к которым дана запись вида –=, рекомендуется заполнять «окошки» не только в прямом порядке, но и начиная с любого.
Можно использовать задания такого же рода, но со срытыми количествами. При их выполнении внимание учащихся сосредотачивается на соотнесении элементов схемы и предметных совокупностей.
Можно предложить трём ученикам взять со стола карточки (например, всего 5), соответствующие выражению (например, 5–2=3). После этого ученики убеждаются, что сразу всем карточки не взять.
Можно предлагать комплексные задания с карточками и со схемами.
Разрешение таких «противоречий» в игровой форме помогает детям усвоить взаимосвязь между компонентами и результатами действий сложения и вычитания. Однако, осознавая «предметную» взаимосвязь компонентов и результатов действий, не все дети могут описать её, пользуясь математической терминологией: слагаемые, значение суммы, уменьшаемое, вычитаемое, значение разности. В этом случае целесообразно использовать понятия целого и части и соотношение между ними (часть всегда меньше целого; если убрать одну часть, то останется другая).
Понятие целого и части позволяет как бы «материализовать» такие термины, как слагаемые, уменьшаемое, вычитаемое (например, устанавливая соответствие между рисунком и математической записью).
Таблица сложения (вычитания) в пределах 10
Формирование вычислительных умений и навыков – одна из основных задач начального курса математики. Вычислительное умение – это развёрнутое осуществление действия, в котором каждая операция осознаётся и контролируется. В отличие от умения навыки характеризуются свёрнутым, в значительной мере автоматизированным выполнением действия, с пропуском промежуточных операций, когда контроль переносится на конечный результат.
В начальном курсе математики учащиеся должны усвоить на уровне навыка: таблицу сложения (вычитания) в пределах 10; таблицу сложения однозначных чисел с переходом через разряд и соответствующие случаи вычитания; таблицу умножения и соответствующие случаи деления.
Подход учебнике М1М к формированию навыков сложения и вычитания в пределах 10 предполагает осознанное составление таблиц и их непроизвольное или произвольное запоминания в процессе специально организованной деятельности. Осознанное составление таблиц может обеспечиваться теоретической линией курса, предметными действиями, методическими приёмами и наглядными средствами. Для произвольного и непроизвольного запоминания таблиц используется специальная система упражнений.
Таблицы сложения и вычитания в пределах 10 можно условно разделить на четыре группы, каждая из которых связана с теоретическим обоснованием и соответствующим способом действия: 1) принцип построения натурального ряда чисел – присчитывание и отсчитывание по 1; 2) смысл сложения и вычитания – присчитывание и отсчитывание по частям; 3) переместительное свойство сложения – перестановка слагаемых; 4) взаимосвязь сложения и вычитания – правило: если из значения суммы вычесть одно слагаемое, то получим другое слагаемое.
Составление таблиц 1) группы не вызывает затруднения. При формировании вычислительных навыков для случаев сложения и вычитания, представленных во 2), 3), 4) группах, работа организуется в соответствии с определенными этапами: 1 – подготовка к знакомству с вычислительным приёмом; 2 – ознакомление с вычислительным приёмом; 3 – составление таблиц с помощью вычислительных приёмов; 4 – установка на запоминание таблиц; 5 – закрепление таблиц в процессе тренировочных упражнений.
В формировании вычислительных навыков в школьной практике используются различные подходы: а) выучивание таблиц; б) знакомство с различными вычислительными приёмами - составление таблиц - непроизвольное запоминание в процессе выполнения упражнений; в) после использования предметных действий и вычислительных приёмов, ученику даётся установка на запоминание.
Данный подход не всегда оказывается эффективным для формирования автоматизированных навыков сложения и вычитания в пределах 10. В связи с этим многие учителя дают детям установку на запоминание состава каждого числа в пределах 10, ориентируясь при этом на формирование сознательных навыков.
Десятичная система счисления. Нумерация чисел.