Реферат: Методы анализа управленческих решений

3001,5 - 3115,4 = -113,9 тыс. $;

3) уменьшения средней продолжительности рабочего дня - из четвертого вычитается третий

2958,0 - 3001, 5 = -43,5 тыс. $;

4) повышения средней часовой выработки 3155,2 - 2958,0 = +197,2 тыс. $.

Общее отклонение 3155,2 - 2803,8 = +351,4 тыс. $. Или 311,6 - 113,9 - 43,5 + 197,2 = +351,4.

При использовании МЦП очень важно обеспечить строгую пос­ледовательность подстановки: сначала выявляется влияние коли­чественных показателей, а потом - качественных. К качественным относятся, например, выработка, производительность труда, цена.

Факторный анализ с применением ЭВМ

Факторный анализ — это процедура установления силы влия­ния факторов на функцию или результативный признак (полез­ный эффект машины.элементы совокупных затрат, производитель­ности труда и т.д.) с целью ранжирования факторов для разработ­ки плана организационно-технических мероприятий по улучшению функции.

Применение методов факторного анализа требует большой под­готовительной работы и трудоемких по установлению моделей рас­четов. Поэтому без ЭВМ не рекомендуется применять методы кор­реляционного и регрессионного анализа, главных компонент. К тому же в настоящее время для ЭВМ различных классов имеются стандартные программы по этим методам. В свою очередь пользо­ваться установленными с помощью ЭВМ моделями очень просто.

На подготовительной стадии факторного анализа большое вни­мание следует уделять качеству матрицы исходных данных для ЭВМ. С этой целью сначала рекомендуется на основе логического анализа определять группы факторов, влияющих на исследуемую функцию.

К исходным данным предъявляются следующие требования:

а) в объем выборки должны включаться данные только по одно­родной совокупности объектов анализа, т.е. одного назначения и класса, используемых (изготавливаемых, функционирующих) в ана­логичных условиях по характеру и типу производства, режиму работы, географическому району и т.д. В том случае, когда необ­ходимо увеличить размер матрицы, исходные данные отдельных объектов могут быть приведены в сравнимый вид с большинством объектов по отличающимся признакам путем умножения их на корректирующие, коэффициенты;

б) период динамического ряда исходных данных должен быть небольшим, но, по возможности, одинаковым для всех объектов. Устойчивый период упреждения (зона прогноза) обычно в два и более раза меньше периода динамического ряда. Например, по дан­ным за 1985-1995гг. можно разработать прогноз до 2000г., а в пос­ледующие годы по фактическим данным модель должна обновляться (уточняться);

в) исходные данные должны быть качественно однородными, с небольшими интервалами между собой;

г) следует применять одинаковые методы или источники фор­мирования данных. Если динамический ряд имеет крупные струк­турные сдвиги (например из-за изменения цен, ассортимента вы­пускаемой продукции, программы ее выпуска и т.д.), то все дан­ные должны быть приведены в сравнимый вид или одинаковые условия;

д) отдельные исходные данные должны быть независимы от предыдущих и последующих наблюдений.

Например, наблюдение не должно определяться расчетным путем по предыдущему на­блюдению.

Основные параметры корреляционно-регрессионного анализа в связи с их сложностью не приводятся, поскольку все расчеты предполагается выполнять на ЭВМ по стандартной программе. Ко­нечные результаты расчета выдаются на печать (табл. 4.3).

Факторный анализ следует проводить в следующей последова­тельности:

1. Обоснование объекта анализа, постановка цели.

2. Сбор исходных данных и их уточнение в соответствии с ранее описанными требованиями .

Основные параметры корреляционно- регрессионного анализа .

Назначение

параметра

Обозначение Что характеризует параметр и для чего применяется Оптимальное значение параметра
1 2 3 4
1. Объем выработки м Количество данных по фактору (размер матрицы по вертикали). Применяется для установления тенденций изменения фактора Не менее чем в 3-5 раз больше количества факторов (Nxi)
2. Коэффициент вариации Vi Уровень отклонения значений факторов от средней анализируемой совокупности Меньше 33%
3. Коэффициент парной корреляции Rxy Тесноту связи между i-м фактором и функцией. Применяется для отбора факторов Больше 0,1
4. Коэффициент частной корреляции Rxx Тесноту связи между факторами. Применяется для отбора факторов Чем меньше, тем лучше модель
5. Коэффициент множественной корреляции R Тесноту связи одновременно между всеми факторами и функцией. Применяется для выбора модели Больше 0,7
6. Коэффициент множественной детерминации D Долю влияния на функцию включенных в модель факторов. Равен квадрату коэффициента множественной корреляции Больше 0,5
7. Коэффициент асиметрии A Степень отклонения фактического распределения случайных наблюдений ?

К-во Просмотров: 642
Бесплатно скачать Реферат: Методы анализа управленческих решений