Реферат: Методы анализа управленческих решений
3001,5 - 3115,4 = -113,9 тыс. $;
3) уменьшения средней продолжительности рабочего дня - из четвертого вычитается третий
2958,0 - 3001, 5 = -43,5 тыс. $;
4) повышения средней часовой выработки 3155,2 - 2958,0 = +197,2 тыс. $.
Общее отклонение 3155,2 - 2803,8 = +351,4 тыс. $. Или 311,6 - 113,9 - 43,5 + 197,2 = +351,4.
При использовании МЦП очень важно обеспечить строгую последовательность подстановки: сначала выявляется влияние количественных показателей, а потом - качественных. К качественным относятся, например, выработка, производительность труда, цена.
Факторный анализ с применением ЭВМ
Факторный анализ — это процедура установления силы влияния факторов на функцию или результативный признак (полезный эффект машины.элементы совокупных затрат, производительности труда и т.д.) с целью ранжирования факторов для разработки плана организационно-технических мероприятий по улучшению функции.
Применение методов факторного анализа требует большой подготовительной работы и трудоемких по установлению моделей расчетов. Поэтому без ЭВМ не рекомендуется применять методы корреляционного и регрессионного анализа, главных компонент. К тому же в настоящее время для ЭВМ различных классов имеются стандартные программы по этим методам. В свою очередь пользоваться установленными с помощью ЭВМ моделями очень просто.
На подготовительной стадии факторного анализа большое внимание следует уделять качеству матрицы исходных данных для ЭВМ. С этой целью сначала рекомендуется на основе логического анализа определять группы факторов, влияющих на исследуемую функцию.
К исходным данным предъявляются следующие требования:
а) в объем выборки должны включаться данные только по однородной совокупности объектов анализа, т.е. одного назначения и класса, используемых (изготавливаемых, функционирующих) в аналогичных условиях по характеру и типу производства, режиму работы, географическому району и т.д. В том случае, когда необходимо увеличить размер матрицы, исходные данные отдельных объектов могут быть приведены в сравнимый вид с большинством объектов по отличающимся признакам путем умножения их на корректирующие, коэффициенты;
б) период динамического ряда исходных данных должен быть небольшим, но, по возможности, одинаковым для всех объектов. Устойчивый период упреждения (зона прогноза) обычно в два и более раза меньше периода динамического ряда. Например, по данным за 1985-1995гг. можно разработать прогноз до 2000г., а в последующие годы по фактическим данным модель должна обновляться (уточняться);
в) исходные данные должны быть качественно однородными, с небольшими интервалами между собой;
г) следует применять одинаковые методы или источники формирования данных. Если динамический ряд имеет крупные структурные сдвиги (например из-за изменения цен, ассортимента выпускаемой продукции, программы ее выпуска и т.д.), то все данные должны быть приведены в сравнимый вид или одинаковые условия;
д) отдельные исходные данные должны быть независимы от предыдущих и последующих наблюдений.
Например, наблюдение не должно определяться расчетным путем по предыдущему наблюдению.
Основные параметры корреляционно-регрессионного анализа в связи с их сложностью не приводятся, поскольку все расчеты предполагается выполнять на ЭВМ по стандартной программе. Конечные результаты расчета выдаются на печать (табл. 4.3).
Факторный анализ следует проводить в следующей последовательности:
1. Обоснование объекта анализа, постановка цели.
2. Сбор исходных данных и их уточнение в соответствии с ранее описанными требованиями .
Основные параметры корреляционно- регрессионного анализа .
Назначение параметра | Обозначение | Что характеризует параметр и для чего применяется | Оптимальное значение параметра |
1 | 2 | 3 | 4 |
1. Объем выработки | м | Количество данных по фактору (размер матрицы по вертикали). Применяется для установления тенденций изменения фактора | Не менее чем в 3-5 раз больше количества факторов (Nxi) |
2. Коэффициент вариации | Vi | Уровень отклонения значений факторов от средней анализируемой совокупности | Меньше 33% |
3. Коэффициент парной корреляции | Rxy | Тесноту связи между i-м фактором и функцией. Применяется для отбора факторов | Больше 0,1 |
4. Коэффициент частной корреляции | Rxx | Тесноту связи между факторами. Применяется для отбора факторов | Чем меньше, тем лучше модель |
5. Коэффициент множественной корреляции | R | Тесноту связи одновременно между всеми факторами и функцией. Применяется для выбора модели | Больше 0,7 |
6. Коэффициент множественной детерминации | D | Долю влияния на функцию включенных в модель факторов. Равен квадрату коэффициента множественной корреляции | Больше 0,5 |
7. Коэффициент асиметрии | A | Степень отклонения фактического распределения случайных наблюдений ?
К-во Просмотров: 642
Бесплатно скачать Реферат: Методы анализа управленческих решений
|