Реферат: Методы дозиметрии

Fe2+ + H2O2 -» Fe3+ + ОН + ОН и некоторым другим

Появление Fe3 изменяет оптическую плотность раствора, которая измеряется спектрофотометром (прибором для измерения поглощения видимого света в различных областях спектра).

Изменение оптической плотности зависит от числа образовавшихся в результате облучения и завершения всех реакций ионов трехвалентного железа и служит мерой поглощенной энергии.

Энергия, поглощенная в химическом дозиметре, определяется соотношениями

E=M(Sобл- Sчист)

где Sобл и Sчист — оптическая плотность облученного и необлученного растворов,

M—коэффициент, зависящий от свойств дозиметра и условий облучения

Sобл- Sчист= µ*C*1

где µ —коэффициент поглощения, зависящий от температуры,

С —концентрация ионов трехвалентного железа,

1 — толщина слоя раствора

Таким образом, по изменению оптической плотности раствора можно определить концентрацию продукта, образовавшегося в растворе под действием излучения. Зная концентрацию образованных ионов и радиационно-химический выход реакции их образования, можно легко вычислить поглощенную дозу облучения.

Например, для ферросульфатного дозиметра радиационно-химический выход составляет 15,6 ±0,5.

Основным компонентом данного дозиметра является вода, и эффективный атомный номер по поглощению фотонного излучения для раствора близок к эффективному атомному номеру воды, а следовательно и живой ткани. Поэтому дозиметр практически не имеет хода с жесткостью в диапазоне энергий 100 кэВ — 2 МэВ. Погрешность измерения (особенно при больших дозах) составляет не более 1 %.

В состав химических дозиметров тепловых нейтронов добавляют небольшое количество солей бора или лития. Для учета действия і - фотонов одновременно с нейтронным дозиметром облучают аналогичный дозиметр без добавок бора и лития. Известно некоторое количество различных веществ которые в результате окислительных или восстановительных реакций, протекающих под действием ионизирующего излучения, меняют свою окраску. Если в раствор такого вещества добавить около 10% желатина, а затем раствор охладить, то получится гель-студенистое вещество сохраняющее свою форму. Если облученный гель разрезать на части, то можно получить пространственное распределение поглощенной дозы. Обладая рядом бесспорных преимуществ, химический метод регистрации ионизирующих излучений, тем не менее, крайне редко используется в практической дозиметрии, так как даже у наиболее чувствительных химических дозиметров нижний предел измерения составляет порядка 5 сГр.

Ионизационный метод

Ионизационный метод основан на способности ионизирующего излучения вызывать ионизацию среды. Если взять какое-либо непроводящее электрический ток вещество и поместить его в поле действия ионизирующего излучения, то при взаимодействии излучения с веществом часть энергии передается атомам и молекулам этого вещества и расходуется на их ионизацию. В веществе появляются положительно и отрицательно заряженные ионы. При отсутствии электрического поля ионы рекомбинируют между собой и в результате в веществе устанавливается равновесная концентрация ионных пар (равенство скоростей ионизации и рекомбинации при постоянной интенсивности излучения).

Если к веществу приложить разность потенциалов, то в нем возникает электрическое поле, под действием которого положительные ионы перемещаются к отрицательному электроду, а отрицательные — к положительному электроду. В результате этого в цепи возникает электрический ток. При определенных условиях сила тока пропорциональна интенсивности излучения, воздействующего на вещество.

Рис. 1. Простейшая схема ионизационного детектора

Ионизационные детекторы по конструкции подобны конденсаторам, то есть имеют два электрода, разделенные диэлектриком. В качестве диэлектрика обычно используют газ или смесь газов.

На ион зарядом е в электрическом поле напряженностью E действует сила, равная произведению е . E. Под действием этой силы ионы движутся к электродам, причем скорость их движения пропорциональна напряженности электрического поля. При достаточно большой напряженности скорость перемещения электронов (как более легких частиц) может возрасти настолько, что электрон на длине свободного пробега (от столкновения до столкновения) разгоняется до энергии, превышающей потенциал ионизации атомов и молекул газа. Неупругие столкновения с таким электроном приводят к ионизации атомов и молекул. Этот процесс, названный ударной ионизацией, увеличивает число пар ионов, образующихся в газе, и является механизмом газового усиления ионизационного эффекта регистрируемого излучения.

Люминесцентный метод

Сущность метода заключается в том, что в некоторых веществах (люминофорах) образованные под действием ионизирующего излучения носители заряда (электроны и дырки) локализуются в центрах захвата, благодаря чему происходит накопление поглощенной энергии, которая может быть затем освобождена при дополнительном внешнем воздействии (возбуждении).

Чаще всего дополнительным возбуждением может быть либо освещение люминофора светом определенного спектра, либо его нагрев (фотолюминесценция и термолюминесценция). Рассмотрим механизм термолюминесценции:

Рис. 2. Механизм термолюминесценции: 1 — переход электрона из валентной зоны в зону проводимости; 2 — захват дырки центром люминесценции; 3 — захват электрона ловушкой; 4 — освобождение электронов при нагреве кристалла; 5 — рекомбинация электронов с дырками в центрах люминесценции; 6 — возбуждение центра люминесценции; 7 — излучательный переход в основное состояние.

Электрон, поглощая энергию ионизирующего излучения, переходит из валентной зоны в зону проводимости. Образующаяся дырка переходит в запрещенную зону и создает центр люминесценции. Если в запрещенной зоне имеется электронная ловушка, обусловленная дефектом кристалла или введением примесей, то она захватывает электрон и электрон переходит в метастабильное состояние. Внешнее воздействие сообщает электрону дополнительную энергию и он вновь переходит в зону проводимости, после чего рекомбинирует с дыркой (центром люминесценции). Центр люминесценции переходит в возбужденное состояние, которое снимается излучением светового фотона. В дальнейшем световые вспышки переводятся в электрический сигнал.


Заключение

К-во Просмотров: 2016
Бесплатно скачать Реферат: Методы дозиметрии