Реферат: Методы и алгоритмы компоновки, размещения и трассировки печатных плат
24) Конец работы алгоритма.
Рассмотренный алгоритм прост, легко реализуется на ЭВМ и позволяет получить решение задачи компоновки. Также среди достоинств данной группу алгоритмов выступает высокое быстродействие их при решении задач компоновки.
Основным недостатком последовательного алгоритма является неспособность находить глобальный минимум количества внешних связей (не анализируются возможные ситуации). Наибольшая эффективность метода последовательного разбиения графа имеет место, когда число вершин графа Gзначительно больше вершин в любой части разбиения.
Итерационные алгоритмы компоновки
Сущность данной группы алгоритмов заключается в выборе некоторого начального «разрезания» исходного графа на куски (вручную или с помощью последовательного метода компоновки) и последующего его улучшения с помощью итерационного парного или группового обмена вершин из различных кусков. При этом для каждой итерации осуществляется перестановка тех вершин, которая обеспечивает максимальное уменьшение числа связей между кусками графа или максимальное улучшение другого выбранного показателя качества с учетом используемых ограничений (например, на максимальное число внешних ребер любого отдельно взятого куска).
Рассмотрим основную идею итерационного алгоритма разбиения графа G, заданного матрицей смежности, с минимизацией числа соединительных ребер. Разбиение графа G = (X,U) на l подграфов G1 = (X1 ,U1 ), G2 = (X2 ,U2 ),…,Gl = (Xl ,Ul ) сведем к разбиению на два подграфа. С этой целью в матрице смежности Rвыделим по главной диагонали две подматрицы R1 и R2 . При этом порядок подматрицы R1 равен числу вершин, которые должны находится в G1 , а порядок подматрицы R2 – числу всех оставшихся вершин графа. Необходимо так переставить строки и столбцы матрицы R, чтобы число ребер между G1 и оставшейся частью графа Gбыло минимальным. После этого подматрицу R1 из матрицы R исключаем, вычеркнув из Rстроки и столбцы, соответствующие элементам R1 . Далее подматрицу R1 ’ разбиваем снова на две подматрицы R2 и R2 ’ , причем порядок R2 соответствует числу вершин второго выделяемого подграфа, а порядок R2 – числу оставшихся вершин графа. Переставляем строки и столбцы R1 ’ с целью минимизации числа соединительных ребер. После этого подматрица R2 ’ исключается и процесс повторяется до тех пор, пока не будет выполнено разбиение графа Gна l подграфов.
Основная идея алгоритма заключается в выборе таких строк и столбцов, перестановка которых приводит к сосредоточению в диагональных клетках матрицы Rмаксимального числа элементов. Построим прямоугольную матрицу W = ||wi , j || n i x(n - ni ), в которой строки определяются вершинами из множества I , а столбцы – из множества V , . На пересечении k строки (и q столбца находится элемент
,
где rk , q – элемент матрицы смежности R.
Элемент wk , q матрицы W характеризует изменение числа соединительных ребер между Gi и Gj при перестановке вершин и . Используя матрицу W , можно найти подстановку, которая увеличит число элементов в подматрицах R1 и R1 ’ . Такой процесс повторяется до тех пор, пока в подматрице R1 не сосредоточится максимальное число единиц.
В итерационных алгоритмах предусмотрена возможность поиска оптимального варианта для различных начальных разбиений. Это связано с тем, что при использовании итерационных алгоритмов оптимальность решения в значительной мере зависит от того, насколько удачно было произведено начальное разбиение графа G(X,U).
Итерационные алгоритмы компоновки обеспечивают высокое качество решения задачи, однако требуют больших затрат машинного времени, чем последовательные алгоритмы. Для сокращения числа итераций обмена вершин между кусками в смешанных алгоритмах для получения начального «разрезания» графа применяют последовательные методы формирования его кусков. С этой целью в некоторых итерационных алгоритмах используют процесс групповой перестановки взаимно непересекающихся пар вершин.
3. АЛГОРИТМЫ РАЗМЕЩЕНИЯ
Исходной информацией при решении задач размещения являются: данные о конфигурации и размерах коммутационного пространства, определяемые требованиями установки и крепления данной сборочной единицы в аппаратуре; количество и геометрические размеры конструктивных элементов, подлежащих размещению; схема соединений, а также ряд ограничений на взаимное расположение отдельных элементов, учитывающих особенности разрабатываемой конструкции. Задача сводится к отысканию для каждого размещаемого элемента таких позиций, при которых оптимизируется выбранный показатель качества и обеспечивается наиболее благоприятные условия для последующего электрического монтажа. Особое значение эта задача приобретает при проектировании аппаратуры на печатных платах.
Основная сложность в постановке задач размещения заключается в выборе целевой функции. Связано это с тем, что одной из главных целей размещения является создание наилучших условий для дальнейшей трассировки соединений, что невозможно проверить без проведения самой трассировки. Любые другие способы оценки качества размещения (минимум числа пересечений ребер графа, интерпретирующего электрическую схему соединений, разбиение графа на минимальное число плоских суграфов и т.д.), хотя и позволяют создать благоприятные для трассировки условия, но не гарантируют получение оптимального результата, поскольку печатные проводники представляют собой криволинейные отрезки конечной ширины, конфигурация которых определяется в процессе их построения и зависит от порядка проведения соединений. Следовательно, если для оценки качества размещения элементов выбрать критерий, непосредственно связанный с получением оптимального рисунка металлизации печатной платы, то конечный результат может быть найден только при совместном решении задач размещения, выбора очередности проведения соединений и трассировки, что практически невозможно вследствие огромных затрат машинного времени.
Поэтому все применяемые в настоящее время алгоритмы размещения используют промежуточные критерии, которые лишь качественно способствуют решению основной задачи: получению оптимальной трассировки соединений. К таким критериям относятся: 1) минимум суммарной взвешенной длины соединений; 2) минимум числа соединений, длина которых больше заданной; 3) минимум числа пересечение проводников; 4) максимальное число соединений между элементами, находящимися в соседних позициях либо в позициях, указанных разработчиком; 5) максимум числа цепей простой конфигурации.
Наибольшее распространение в алгоритмах размещения получил первый критерий, что объясняется следующими причинами: уменьшение длин соединений улучшает электрические характеристики устройства, упрощает трассировку печатных плат; кроме того, он сравнительно прост в реализации.
В зависимости от конструкции коммутационной платы и способов выполнения соединений расстояние между позициями установки элементов подсчитывается по одной из следующих формул:
, ,
В общем виде задача размещения конструктивных элементов на коммутационной плате формулируется следующим образом. Задано множество конструктивных элементов R={r 1 , r 2 ,…, rn } и множество связей между этими элементами V = {v 1 , v 2 ,…, vp }, а также множество установочных мест (позиций) на коммутационной плате T = {t 1 , t 2 ,…, tk }. Найти такое отображение множества Rна множестве T , которое обеспечивает экстремум целевой функции
, где cij – коэффициент взвешенной связности.
Силовые алгоритмы размещения
В основу этой группы алгоритмов положен динамический метод В.С. Линского. Процесс размещения элементов на плате представляется как движение к состоянию равновесия системы материальных точек (элементов), на каждую из которых действуют силы притяжения и отталкивания, интерпретирующие связи между размещаемыми элементами. Если силы притяжения, действующие между любыми двумя материальными точками ri и rj пропорциональны числу электрических связей между данными конструктивными элементами, то состояние равновесия такой системы соответствует минимуму суммарной длины всех соединений. Введение сил отталкивания материальных точек друг от друга и от границ платы исключает возможность слияния двух любых точек и способствует их равномерному распределению по поверхности монтажного поля. Чтобы устранить возникновение в системе незатухающих колебаний, вводят силы сопротивления среды, пропорциональные скорости движения материальных точек.
Таким образом, задача оптимального размещения элементов сводится к нахождению такого местоположения точек, при котором равнодействующие всех сил обращаются в нуль.
К достоинствам данного метода относятся возможность получения глобального экстремума целевой функции, а также сведение поиска к вычислительным процедурам, для которых имеются разработанные численные методы.
Недостатками являются трудоемкость метода и сложность его реализации (подбора коэффициентов для силовых связей); необходимость фиксирования местоположения некоторого числа конструктивных элементов на плате для предотвращения большой неравномерности их размещения на отдельных участках платы.
Итерационные алгоритмы размещения
Итерационные алгоритмы имеют структуру, аналогичную итерационным алгоритмам компоновки, рассмотренным ранее. В них для улучшения исходного размещения элементов на плате вводят итерационный процесс перестановки местами пар элементов.
В случае минимизации суммарной взвешенной длины соединений формула для расчета изменения значения целевой функции при перестановке местами элементов ri и rj , закрепленных в позициях tf и tg , имеет вид:
,
где p и h ( p ) – порядковый номер и позиция закрепления неподвижного элемента rp . Если , то осуществляют перестановку ri и rj , приводящую к уменьшению целевой функции на , после чего производят поиск и перестановку следующей пары элементов и т.д. Процесс заканчивается получением такого варианта размещения, для которого дальнейшее улучшение за счет парных перестановок элементов невозможно.
Использование описанного направленного перебора сокращает число анализируемых вариантов размещения (по сравнению с полным перебором), но приводит к потере гарантии нахождения глобального экстремума целевой функции.20
Алгоритмы дано группы характеризуются достаточно высоким быстродействием. Алгоритмы с групповыми перестановками элементов на практике используются редко ввиду их сложности, которая часто не оправдывает достигаемую степень улучшения результата.
Последовательные алгоритмы размещения