Реферат: Методы и средства контактных электроизмерений температуры

Для повышения выходной э.д.с. используется несколько термопар, образующих термобатарею. На

рис. 3 рис. 3 показан чувствительный элемент радиационного пирометра. Рабочие спаи термопар расположены на черненом лепестке, поглощающем излучение, холодные концы — на массивном медном кольце, служащем теплоотводом и прикрытом экраном. Благодаря массивности и хорошей теплоотдаче кольца температуру свободных концов можно считать постоянной и равной комнатной.

1.2. УДЛИНИТЕЛЬНЫЕ ТЕРМОЭЛЕКТРОДЫ, ИЗМЕРИТЕЛЬНЫЕ ЦЕПИ, ПОГРЕШНОСТИ ТЕРМОПАР

Удлинительные термоэлектроды. Свободные концы термопары лолжны находиться при постоянной температуре, лучше всего при 0°С (рис. 4 ). Однако не всегда возможно сделать термоэлектроды термопары настолько длинными и гибкими, чтобы свободные концы ее можно было разместить в достаточном удалении от рабочего спая (рис. 4 ). Кроме того, при использовании благородных металлов делать длинные термоэлектроды экономически невыгодно, поэтому приходится использовать провода от другого материала. Соединительные провода A 1 и B 1 (рис. 4 ), идущие от зажимов в головке термопары до места нахождения нерабочих спаев и выполняемые из дешевых материалов, называют удлинительными термоэлектродами. Чтобы при включении удлинительных термоэлектродов из материалов, отличных от материалов основных термоэлектродов, не изменилась термо‑э.д.с. термопары, необходимо выполнить два условия. Первое — удлини­тельные термоэлектроды должны быть термоэлектрически идентичны с основной термопарой, т. е. иметь ту же термо‑э.д.с. в диапазоне возможных тем-

Рис. 4

ператур места сое­динения термоэлектрод-

ов в головке термопары (примерно в диапазоне от 0 до 100° С). И второе—места присоединения удлинительных термоэлектродов к основным термоэлектродам в головке термопары должны иметь одинаковую тем­пературу,

Для термопары платинородий — платина применяются удлинительные термоэлектроды из меди и сплава ТП, образующие тер­мопару, термоидентичную термопаре платинородий — платина в пределах до 150° С. Такие же удлинительные термоэлектроды с измененными знаками полярности применяют для термопары вольфрам — молибден. Для термопары хромель — алюмель удли­нительные термоэлектроды изготовляются из меди и константана. Для термопары хромель — копель удлинительными являются ос­новные термоэлектроды, но выполненные в виде гибких проводов.

Погрешность, обусловленная изменением температуры нерабо- ihx спаев термопары. Градуировка термопар осуществляется при температуре нерабочих спаев, равной нулю. Если при практическом использовании термоэлектрического пирометра температура нерабочих спаев будет отличаться от 0° С на величину ΔΘ0 , то необходимо ввести соответствующую поправку в показания термометра.

Однако следует иметь в виду, что из-за нелинейной зависимости между э.д.с. термопары и температурой рабочего спая величина поправки к показаниям указателя ΔΘ, градуированного непосредственно в градусах, не будет равна разности температур ΔΘ0 свободных концов, что очевидно из рис. 5 .

Величина поправки ΔΘ связана с разностью температур свободных концов через коэффициент k (ΔΘ = ΔΘ0k ) называемый поправочным коэффициентом на температуру нерабочих концов. Величина k различна для каждого участка кривой, поэтому градуировочную кривую разделяют на участки по 100° С и для каждого участка определяют значение k.

В качестве примера устройства для автоматического введения поправки на температуру нерабочих спаев на рис. 6 схематично показано устройство типа КТ-08. В цепь термопары и милливольтметра включен мост, одним из плеч которого является терморезистор RТ из медной или никелевой проволоки, помещенный возле нерабочих спаев термопары (остальные плечи моста выполнены из манганиновых резисторов). При температуре бц мост находится в равновесии и напряжение на его выходной диагонали равно нулю. При повышении температуры нерабочих спаев сопротивление RТ также увеличивается, мост выходит из равновесия и возникающее напряжение на выходной диаго­нали моста корректирует уменьшение термо‑э.д.с. термопары. Вследствие нелинейности термопар полной коррекции погрешности, обусловленной изменением температуры нерабочих спаев, при помощи описываемого устройства получить не удается, однако величина остаточной погрешности не превышает 0,04 мВ на 10 К.

Недостатком подобных устройств является необходимость в источнике тока для питания моста и появление дополнительной погрешности, обусловленной изменением напряжения этого источника.

Погрешность, обусловленная изменением температуры линии, термопары и указателя. В термоэлектрических термометрах для измерения термо‑э.д.с. применяют как обычные милливольтметры, так и низкоомные компенсаторы с ручным или автоматическим уравновешиванием на .предел измерения до 100 мВ.

В тех случаях, когда термо‑э.д.с. измеряется компенсатором, сопротивление цепи термо‑э.д.с., как известно, роли не играет. В тех же случаях, когда термо‑э.д.с. измеряется милливольтметром, может возникнуть погрешность, обусловленная изменением сопротивлений всех элементов, составляющих цепь термо‑э.д.с.; поэтому необходимо стремиться к постоянному значению сопро­тивления проводов и самой термопары.

В отечественных термоэлектрических термометрах при их градуировке учитывается сопротивление внешней относительно милливольтметра цепи, т. е. проводов и термопары (R пр + R ТП ), равное 5 Ом. Регулировка сопротивления этой внешней цепи осуществ­ляется при помощи добавочной катушки сопротивления из манганина непосредственно при монтаже прибора.

Паразитные термо‑э.д.с. возникают вследствие наличия неод-нородностей в материалах и по данным, приведенным в работе, могут составлять для различных материалов 10—100 мкВ. В частности, для платиновой проволоки при протяженности распреде­ления температуры 30 мм и температурном градиенте 30 К/мм величина паразитной термо‑э.д.с. составляет 10 мкВ.

1.3. РАЗНОВИДНОСТИ ТЕРМОРЕЗИСТОРОВ, ПРИМЕНЯЕМЫЕ МАТЕРИАЛЫ, ОСНОВЫ РАСЧЕТА

Для измерения температуры применяют металлические и полу­проводниковые резисторы. Большинство химически чистых металлов обладает положительным температурным коэффициентом сопротивления (ТКС), колеблющимся (в интервале 0—100° С) от 0,35 до 0,68 %/К.

Для измерения температур используются материалы, обладающие высокостабильной ТКС, линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. К таким материалам в первую очередь относится платина. Благодаря своей дешевизне широко распространены медные терморезисторы, применяются также вольфрамовые и никелевые.

Сопротивление платиновых терморезисторов в диапазоне температур от 0 до + 650° С выражается соотношением R Т = R 0 (1 + A Θ + B Θ2 ), где R 0 сопротивление при 0° С; Θ — температура в градусах Цельсия. Для платиновой проволоки, применяемой в промышленных термометрах сопротивления, A = 3,96847∙10-12 1/К; В = — 5,847∙107 1/К2 . В интервале от 0 до — 200° С зависимость сопротивления платины от температуры имеет вид R т = R 0 [1 + A Θ + В Θ2 + С (Θ — 100)3 ], где С = — 4,22∙1012 1/К3 .

При расчете сопротивления медных проводников в диапазоне от — 50 до + 180° С можно пользоваться формулой R Т = R 0 (1 + aΘ), где a = 4,26∙103 1/К.

Если для медного терморезистора требуется определить сопротивление R T2 (при температуре Θ2 ) по известному сопротивлению RT 2 (при температуре Θ1 ), то следует пользоваться формулой

или более удобным соотношением

где Θ = 1/a — постоянная, имеющая размерность температуры и равная Θ0 = 234,7° С (по физическому смыслу Θ0 — это такое значение температуры, при котором сопротивление меди должно было бы стать равным нулю, если бы ее сопротивление уменьшалось все время по линейному закону, чего нет на самом деле).

В значительной степени сопротивление металлов зависит от их химической чистоты и термообработки. ТКС сплавов обычно меньше, чем у чистых металлов, и для некоторых сплавов может быть даже отрицательным в определенном температурном диапазоне.

Выбор металла для терморезистора определяется в основном химической инертностью металла к измеряемой среде в интересующем интервале температур. С этой точки зрения медный преобразователь можно применять только до температур порядка 200° С в атмосфере, свободной от влажности и коррелирующих газов. При более высоких температурах медь окисляется. Нижний предел температуры для медных термометров сопротивления равен — 50° С хотя при введении индивидуальной градуировки возможно их применение вплоть до — 260° С.

Промышленные платиновые термометры используются в диапазоне температур от —200 до +650° С, однако есть данные, свидетельствующие о возможности применения платиновых термометров для измерения температур от —264 до +1000° С.

Основным преимуществом никеля является его относительно высокое удельное сопротивление, но зависимость его сопротивления от температуры линейна только для температур не выше 100° С. При условии хорошей изоляции от воздействия среды никелевые терморезисторы можно применять до 250—300° С. Для более высоких температур его ТКС неоднозначен. Медные и никелевые терморезисторы выпускают из литого микропровода в стеклянной изоляции. Микропроволочные терморезисторы герметизированы, вы-сокостабильны, малоинерционны и при малых габаритах могут иметь сопротивления до десятков килоом.

К-во Просмотров: 269
Бесплатно скачать Реферат: Методы и средства контактных электроизмерений температуры