Реферат: Методы изучения масс микрочастиц

Макс Абрагам (1875-1922 рр.) і Гендрік Лоренц (1853-1928 рр.) розвинули цю думку далі і частково вивели формули залежності маси електрона від його швидкості.

Однак, будову електрона вони уявляли по-різному: Абрагам ‑ у вигляді абсолютно твердої кульки, а Лоренц ‑ у вигляді пружної кульки, яка при переміщенні стискається в напрямку руху, причому тим більше, чим більша його швидкість. Тому їх формули виявились різними. Обидві теорії приводили до того, що маса електрона повинна залежати від його швидкості, але давали різні вирази і відповідно різну величину цієї залежності. В ці формули (Абрагама і Лоренца) входить відношення швидкості електрона до швидкості світла в пустоті. Таким чином, ясно було одне: ефект зміни маси з швидкістю повинен бути помітним при швидкостях електрона, порівняних по величині зі швидкістю світла.

В 1901 році Вальтер Кауфман (1871-1947 рр.) виміряв масу електронів, що рухаються з великою швидкістю. Для цього він користувався вже відомим методом параболи Томсона.

В досліді Кауфмана досліджувалися однакові частинки ‑ електрони, які не мають відносно велику швидкість. В якості джерела Кауфман використав радіоактивний препарат, що випромінював b -частинки, тобто швидкі електрони. Однією з особливостей b -випромінювання є те, що вилітаючі частки мають неперервний спектр швидкостей, тобто в потоці частинок представлені всі швидкості, від нульової до деякої граничної, характерної для кожного даного радіоактивного джерела.

Установка Кауфмана (рис. 3) являє собою вакуумну трубку, з одного краю якої розміщені джерело електронів і діафрагма, а з другого ‑ екран або фотопластинка. Всередині трубки на шляху пучка електронів розміщені відхиляючі пластини П1 і П2 , між якими з допомогою електричної батареї створюється різниця потенціалів U 1 -U 2 . Там же розміщений постійний магніт М . Таким чином створюються магнітне і електричне поля, які відхиляють електрони.

В результаті зміни напрямку електричного поля, тобто переключення полярності батареї, Кауфман одержав на фотопластинці не одну, а дві криві. Точка О відповідає невідхиленому променю. Криві не доходять до точки О тому, що швидкість часток обмежена зверху. Однак, найсуттєвішим в цих кривих було те, що вони не є параболами.

Відмінність експериментальних кривих від парабол показує, що при зміні швидкості електрона неперервно змінюється його питомий заряд e/m . Але з ряду міркувань заряд електрона змінюватись не може, значить, змінюється його маса. Таким чином те, що в досліді Кауфмана була отримана неперервна крива, відмінна від параболи, свідчило про те, що при різних швидкостях маса електрона різна.

Рис. 3. Установка для дослідження залежності маси електрона від швидкості..

7. Відкриття нейтрона і визначення його маси

На початку XX ст. були відомі лише дві елементарні частки ‑ електрон і протон і лише дві їх основні характеристики ‑ електричний заряд і маса.

В відповідності із цим представленням про склад речовини в 1911 р. Ернестом Резерфордом (1871-1937 рр.) була запропонована модель атома у вигляді важкого позитивно зарядженого ядра, навколо якого обертаються негативно заряджені електрони. При цьому говорили, що ядра атомів складаються з протонів і нейтронів.

Самий легкий з елементів - водень - має атомну вагу рівну одиниці, а електричний заряд його ядра рівний +1. Ядро атома водню складається з одного протону, навколо якого обертається один електрон. Згідно з моделлю Резерфорда, більш важкі атоми мають ядра, які складаються з декількох протонів і нейтронів, а біля ядер обертається група електронів.

Ще в 1900 р. Максом Планком (1858-1947 рр.) в науку було введено поняття про дискретність енергії. Твердження про те, що будь-яка система при будь-яких процесах може поглинати і віддавати енергію не неперервно, а лише окремими порціями, квантами, знайшло дослідне підтвердження.

В 1913 р. Нільс Бор (1885-1962 рр.) розробив нову модель атома. При цьому, в відповідності з думками Планка, він постулював, що момент обертання електронів навколо ядра не довільний, а обов'язково рівний цілому кратному деякої величини h , тобто 1h , 2h або взагалі nh . Постійна Планка h =(6,628169±0,000028)×1034 Дж×с є мінімальною порцією дії. З цього положення звичайно слідує, що електрони можуть обертатися навколо ядра не по довільних, а лише по визначених - стаціонарних орбітах.

Модель Бора була дуже плодовита, з її допомогою вдалося пояснити деякі важливі закономірності мікросвіту, частково визначити довжини хвиль, що випромінюються атомами.

Успіх моделі атому Бора був великим, але не повним. Число електронних ліній, що спостерігались на досліді, в окремих випадках було більшим того, яке випливає з цієї моделі. Там, де згідно з теорією Бора повинна бути одна лінія, іноді їх було дві або три. Особливо великі і непереборні труднощі виникли при спробах пояснити з допомогою моделі атома Бора вплив на світло магнітного поля.

Можна було очікувати, що розщеплення спектральних ліній в магнітному полі відсутнє в відповідності з числом можливих орієнтацій орбітального магнітного моменту. Дійсно, такий ефект спостерігається і носить назву нормального ефекту Зеємана. Однак в деяких випадках поряд з цим спостерігається розщеплення на більше число ліній, яке називають аномальним ефектом Зеємана.

Аномальний ефект Зеємана одержав пояснення з допомогою уявлень про магнітний момент і спін електрона. Справді, так як в магнітному полі електрони переорієнтовуються, то на це потрібна деяка додаткова енергія. Таким чином, утворюються додаткові рівні енергії і при випромінюванні квантів світла в магнітному полі одержується більше число спектральних ліній, ніж без нього.

В 1930 році Боте і Беккер знайшли, що при опроміненні a -частками легкого металу берилію виникає сильно проникливе випромінювання. Поставивши на шляху такого випромінювання товсту металеву пластинку, вчені легко встановили, що це не електрони і не протони, так як ці частки поглинаються в тонкому шарі металу. Залишалося допустити, що це g -випромінювання, так як інших іонізуючих випромінювань тоді ще не було відомо. Невідоме випромінювання, проходячи через свинцеву пластинку товщиною 5 см, послаблювалось вдвоє. Звідси випливало, що якщо це g -випромінювання, то воно повинно мати енергію 5 МеВ.

Трудність була вирішена Чедвіком, який зрозумів, що невідоме випромінювання представляє собою потік часток, які мають масу приблизно таку ж, як і протони і не мають електричного заряду. Вони були названі нейтронами.

За даними, які одержали до 1972 року маса спокою нейтрона m n =(1,6749575±0,0000087)×10-27 кг або 1,00866520±0,00000010 а. о. м. Спін нейтрона, так як і протона, був рівним

,

тобто, напівцілим.

Ідея про протон-нейтронний склад атомних ядер була правильною і плодотворною. В наступні роки протон-нейтронна модель ядра одержала подальший розвиток.

Дальше дослідження нейтронів показало, що ці частки нестійкі. Через деякий час нейтрон самовільно перетворюється в протон, електрон і антинейтрино. Маса спокою нейтрона більша маси спокою протона і електрона, разом взятих, тому ця ядерна реакція йде з виділенням енергії, яку і виносять породжені частки.

Дослідження нейтрино і антинейтрино показали, що ці частки мають спін і не мають електричного заряду. Їх маса спокою рівна нулю. Вони дуже слабо взаємодіють з речовиною і тому володіють надзвичайно великою проникною здатністю. Беручи участь в багатьох ядерних перетвореннях, нейтрино і антинейтрино забирають помітну частину енергії.

8. Визначення маси мезонів, гіперонів і, можливо, кварків

В 1936 році Андерсон і Неддермайєр при вивченні космічних променів з допомогою камери Вільсона відкрили частку, яка була важча за електрон, але легше від протона. Для вияснення її властивостей в першу чергу потрібно було виміряти масу і заряд. Визначення маси чистки по її сліду в камері Вільсона робиться так: камера розміщується в сильне магнітне поле. При цьому траєкторія частки викривлюється, а величина цього викривлення виявляється пропорційною силі магнітного поля і обернено пропорційною кількості руху та самої частки.

Таким чином, Андерсон і Неддермайєр встановили, що нова частка відрізняється від електрона і протона і має масу, рівну близько 200 електронних мас m e , і одиничний електричний заряд. Ця частка одержала назву m-мезон.

В 1947 р. Латтес, Мюгерхед, Оккіамн і Пауел при роботі з фотографічними емульсіями виявили на них сліди нової частки. На одній з таких фотографій було видно, що ця частка, проходячи деякий шлях в емульсії, розпадається, породжуючи другу частку, а та також, проходячи деяку відстань в емульсії, в свою чергу розпадається і породжує ще одну частку.

Вивчення густини слідів показало, що слід зліва більш густіший, а слід справа ще менш густий. Виявилось, що середня поздовжня дільниця відповідає частці, маса якої набагато більша 200 m e і ідентифікується з m-мезоном. Тонкий слід справа відповідає електрону, а більш товстий справа відповідає частинці з масою, близькою до 270m e . Ця частка була названа p-мезоном.

При подальших дослідженнях були знайдені p-мезони трьох типів: p+ , p- і p0 -мезони, тобто позитивні, негативні і нейтральні. За фотографіями слідів з великою точністю була визначена їх маса, яка у p+ і p- -мезоні вбула рівною 273m e , а у p0 -мезона рівна 264m e . Середній час життя p+ і p- -мезонів рівний 2,55´10-8 с, а у p0 -мезона рівний 1,80´10-16 с.

Такий метод використовується при визначенні маси дуже короткоживучих часток, так як їх слід в камері є дуже коротким. На протязі подальших років були відкриті частки з масою, рівною 966m e , 974m e (к -мезони) і ціла група часток з масою від 2183m e до 2580m e , що отримали назву гіперонів. Середній час їх життя 10-8 -10-10 с.

ВИСНОВКИ

К-во Просмотров: 361
Бесплатно скачать Реферат: Методы изучения масс микрочастиц