Реферат: Методы Хука-Дживса

end;

calculate;

fb:=fi;

ps:=1;

bs:=0;

fi:=z;

writeln('Поиск по образцу',' ',z:2:3);

for i:=1 to n do

writeln(x[i]:2:3);

(*** После этого произвести исследование вокруг ***)

(*** последней точки образца ***)

j:=1;

goto 0;

7: writeln('Минимум найден');

for i:=1 to n do

writeln('x(',i,')=',p[i]:2:3);

writeln;

writeln('Минимум функции равен',' ',fb:2:3);

writeln('Количество вычислений функции равно',' ',fe);

repeat until keypressed;

end.

Приведенная выше программа реализует описанную процедуру. Одной или двух точек бывает недостаточно для определения начальной точки. Первая точка всегда должна выбираться осмотрительно. ЭВМ работает только с ограниченной точностью, и ошибки могут накапливаться в процессе сложных вычислений, особенно если шаг имеет “неудобную” длину. (Обычно мы будем избегать “неудобной” длины, но программа должна быть работоспособна и в таких ситуациях.) Поэтому в строке , где выясняется вопрос об изменении базисной точки, мы избегаем уменьшения длины шага из-за накапливания ошибки введением длины шага, равной . Мы отслеживаем, где производится исследование – в базисной точке (В5 = 1, Р5 = 0) или в точке образца (В5 = 0, Р5 = 1). Как можно убедиться на практике, если не принимаются такие меры предосторожности даже программа с удовлетворительной логикой будет неработоспособна.

В приведенной программе минимальная длина шага равна , но она может быть изменена . Для контроля за выполнением процедуры в программу введена печать промежуточных результатов. Для увеличения скорости счета могут быть удалены строки вывода подсказок и пояснений.

Процедура calculate вычисляет значение минимизируемой функции ,в нашем случае : f (x1 ,x2 ) = 3x1 2 +4x­1 x2 +5x2 2 ,

при ограничениях x12 x1 +x2 .

Минимум, равный 44, достигается в точке (3;1) при ограничении x1 +x2 =4.

Для начальной точки (4;3) и при длине шага , равной единице , программой успешно решена задача минимизации .

Ниже приведена распечатка результата работы программы :

Модифицированный метод Хука-Дживса

(при наличииограничений)

К-во Просмотров: 905
Бесплатно скачать Реферат: Методы Хука-Дживса