Реферат: Методы маркетинговых исследований в регионе

Другим целям служит факторный анализ. Его название происхо­дит от введенного Ч. Спирмэном понятия общий фактор. Этот тер­мин был впервые употреблен в психологии. Идею Спирмэна в даль­нейшем развил Л.Л. Тэрстоун, который считается создателем много­факторного анализа.

Главная цель факторного анализа — установление общих законо­мерностей, определяющих сущность изучаемого явления. Материалом, на базе которого проводятся такие исследования, служат наблюдения над вариацией значений множества признаков, характеризующих данное явление. Непосредственное раскрытие сущностных законо­мерностей бывает весьма затруднено, а иногда и просто невозможно, если рассматриваемое множество признаков оказывается настолько велико, что избыток информации начинает мешать пониманию наи­более существенных взаимосвязей. Выявление закономерностей об­легчается, если среди рассматриваемых признаков найдутся такие, которые сильно коррелированы между собой и поэтому мало отли­чаются друг от друга в отношении информации об исследуемом яв­лении. В таких случаях следует заменить группу сильно коррелиро­ванных признаков некой расчетной «синтетической» величиной (равнодействующей). Полученная величина после интерпретации (соответствующей области исследования) называется фактором и рассматривается как одна из закономерностей изучаемого явления.

Такая замена групп коррелированных признаков факторами должна проводиться с наименьшими потерями информации, заклю­ченной в исходном множестве признаков. Теоретически полное от­ражение информации, содержащейся в некотором множестве при­знаков, достигается лишь в том случае, когда число факторов равно числу признаков.

В настоящее время в управленческой практике используется множество социально-экономических показателей, всесторонним образом характеризующих происходящие процессы.

Однако для текущего управления экономикой области многие из этих показателей не являются необходимыми. Многократное опи­сание одного и того же явления большим числом различных показа­телей не только не проясняет, а, наоборот, часто даже затемняет картину действительности.

Все более широкое введение автоматической обработки данных создает опасность «переинформирования» руководителей путем пре­доставления им очень большого количества отчетов, содержащих подробные фактические данные с низкой степенью аналитичности.

Вполне целесообразно поэтому разработать метод получения как можно меньшего набора социально-экономических показателей, с помощью которых руководители будут получать необходимую ин­формацию о наиболее важных особенностях социально-экономи­ческих процессов, происходящих в области. Наличие такого рода сведений, например, необходимо для проведения быстрой оценки уровня социально-экономического развития районов области, что, в свою очередь, делает возможным своевременное принятие решений на будущий период. Ведь в этом случае внимание руководителя не поглощено изучением обширного перечня аналитических данных с небольшим количеством обобщенной информации, содержащейся в существующих сводных показателях.

К настоящему времени опубликовано большое количество ра­бот, авторы которых применяют корреляционный и регрессионный анализы в экономических исследованиях. Однако следует отметить, что в некоторых из них авторы не принимают во внимание то об­стоятельство, что корреляционный и регрессионный анализы бази­руются на ряде предпосылок вероятностного характера, что, присту­пая к изучению экономических явлений, исследователь выдвигает определенную гипотезу о существовании, характере и форме связи и на заключительном этапе исследования может с определенным уровнем вероятности принять ее или отвергнуть. Поэтому весьма часто исследователи делают неправильные и необоснованные выво­ды, заменяя конкретный причинный анализ изучаемых явлений чис­то формальным. При моделировании конкретного экономического явления необходимо прежде всего четко и полно сформулировать те условия допущения и ограничения, в рамках которых можно приме­нять построенную модель. Использование математической теории бывает оправдано в той степени, в какой выполняются предпосылки ее применения. В то же самое время формальный математический аппарат не должен заменять экономический анализ и интуицию ис­следователя, потому что целью анализа является сущность экономи­ческих закономерностей, а не математические формулы.

То есть количественный и качественный виды анализа на всех этапах построения модели должны быть в диалектическом единстве.

Используя корреляционный и регрессионный методы анализа экономических явлений, необходимо учитывать их особенности:

многомерность, немногочисленность (по сравнению с естественны­ми микроявлениями), быструю изменчивость, дискретность, наличие случайной компоненты. Использование этих методов может быть только тогда эффективным, когда достаточно последовательно и правильно будут выполнены их теоретико-вероятностные предпо­сылки.

4. Корреляционный анализ

Корреляционным анализом называют анализ зависимостей слу­чайной величины от случайных аргументов в отличие от регрессион­ного анализа, под которым понимают анализ зависимости случайной величины от .неслучайных аргументов.

Как всякий статистический метод, классический корреляцион­ный анализ применим при определенных предпосылках:

1) случайные величины У и Х (в многомерном случае X1, Х2, ..., Хр) представляют собой выборку из двумерной (многомерной) гене­ральной совокупности с нормальным законом распределения;

2) отдельные наблюдения стохастически независимы, т.е. значе­ния данного наблюдения не должны зависеть от значения предыду­щего и последующего наблюдений (проверка наличия автокорреля­ции);

3) аналитическое выражение, аппроксимирующее эмпирическую кривую У=1 (X) (в многомерном случае V=f (X1, X2, ..., Хр), должно быть линейным относительно своих параметров;

4) дисперсия случайной величины У остается постоянной при изменении величины Х (или Xi) или пропорциональной некоторой известной функции от Х(Хi).

5. Регрессионный анализ

Применение регрессионного анализа предполагает обязательное выполнение предпосылок 2—4 корреляционного анализа. Он тесно связан с корреляционным анализом. Но регрессионный анализ предъявляет менее жесткие требования к исходной информации. Например, проведение регрессионного анализа возможно даже в случае некоторого отличия распределения случайных величин от нормального, что существенно, так как часто распределение эконо­мических величин асимметрично. При многомерном регрессионном анализе часто возникает проблема мультиколлинеарности, т.е. между несколькими аргументами существует линейная связь или коллине­арность — линейная взаимосвязь между двумя показателями.

В классическом регрессионном анализе предполагается, что ме­жду независимыми переменными отсутствует линейная связь (это в экономической практике встречается довольно редко).

Мультиколлинеарность затрудняет проведение анализа. Во-первых, усложняется процесс выделения наиболее существенных факторов; во-вторых, искажается смысл коэффициентов регрессии. В-третьих, при решении системы нормальных уравнений для полу­чения коэффициентов регрессии определитель близок к нулю, что влечет за собой появление множества оценок коэффициентов рег­рессии. На практике считается, что два аргумента коллинеарны, если парный коэффициент корреляции между ними по абсолютной вели­чине равен 0,8.

Более точный метод — следующий: аргумент можно отнести к числу мультиколлинеарных, если коэффициент множественной кор­реляции этой переменной от всех остальных аргументов больше ко­эффициента множественной корреляции между зависимой перемен­ной и множеством всех независимых переменных.

К одной из эффективных мер по устранению мультиколлинеар­ности, как показывает опыт, относится исключение из рассмотрения одного или нескольких линейно связанных аргументов либо привле­чение дополнительной информации. Другой метод устранения влия­ния мультиколлинеарности состоит во введении искусственной ор­тогональности.

Следует отметить также, что матрица парных коэффициентов корреляции позволяет в некоторой степени сократить информацию путем перехода от системы первоначально зарегистрированных па­раметров к системе меньшей размерности при повышении адекват­ности отражения изучаемых процессов.

До последнего времени для построения экономико-статисти­ческих моделей в основном применялись методы группировок и ме­тоды корреляционного и регрессионного анализов. Необходимость расширения формального аппарата экономико-статистического мо­делирования связана с объективными трудностями, которые продик­тованы невыполнением предпосылок использования корреляцион­ного и регрессионного анализов, так как классическая теория веро­ятностей и математическая статистика создавались применительно к анализу явлений природы. Социально-экономические же явления многомерны, разнообразны, дискретны, имеют случайную компо­ненту. Вышеперечисленные особенности экономических процессов требуют применения в дополнение к аппарату классической статистики более универсальных методов математического описания. Од ним из путей решения этой проблемы является использование методов распознавания образов, как правило, на ЭВМ.

Аппарат теории распознавания образов позволяет выделить од­нородные группы по большому числу признаков, находить зависи­мости одновременно от количественных и качественных факторов. Методы теории распознавания образов можно применять почти на всех этапах экономико-статистического исследования: при анализе структуры выборочной совокупности, для выбора представителей групп, при обработке экспертных оценок.

Однако в теории распознавания образов много нерешенных проблем. В распоряжении исследователя пока нет надежных фор­мальных критериев для оценки и сравнения разных алгоритмов и программ распознавания образов.

В то же время комплексное применение методов корреляцион­ного и регрессионного анализов и теории распознавания образов способствует идентификации эконометрических моделей больших размерностей; позволяет учитывать факторы, не имеющие количест­венного измерения.

Содержание моделирования с помощью комплексного приме­нения трех вышеуказанных методов состоит в том, чтобы интере­сующую нас зависимость выразить как совокупность моделей двух типов: дискретной модели, описывающей типологическую структуру совокупности, и системы непрерывных моделей объектов внутри классов. Построение дискретно-непрерывной модели включает две основные стадии: разбиение общей совокупности объектов на одно­родные части с помощью методов теории распознавания образов и построение для каждой части самостоятельной регрессионной моде­ли.

С целью получения обобщенных показателей можно пользо­ваться среди прочих таксономическими методами или методами фак­торного анализа, причем можно также предложить такой подход, при котором одновременно находят применение и те и другие методы.

К-во Просмотров: 246
Бесплатно скачать Реферат: Методы маркетинговых исследований в регионе