Реферат: Методы очистки пылегазовых выбросов

Метод позволяет очищать газ от начального содержания сероводорода.

Абсорбция этаноламинами. В этих методах сероводород и диоксид углерода поглощаются растворами моноэтаноламина или триэтаноламина.

Адсорбционные методы очистки. Наиболее глубокую очистку газов от H2 S обеспечивают адсорбционные методы с использованием гидроксида железа, активного угля, цеолитов и других поглотителей.

Процесс очистки газов от H2 S гидроксидом железа, используется давно. При прохождении газа через слой гидроксида железа H2 S поглощается. Одновременно образуется некоторое количество FeS. Присутствующий в очищаемом газе кислород окисляет сульфидную серу с образованием гидроксида железа.

Очистку проводят при близком к атмосферному давлении и температуре 28–30°С.

Рекуперацию серы из отработанного поглотителя обычно проводят путем его обжига, направляя образующиеся в этом процессе газы в сернокислотное производство.

Эффективным поглотителем H2 S является активный уголь. Высокая экзотермичность процессов окисления H2 S при значительных концентрациях его в очищаемых газах обусловливает интенсивный разогрев слоя поглотителя и связанный с этим риск возгорания активного угля. В этой связи использование активного угля для очистки газов от H2 S обычно ограничивают.

Очистка газов от оксидов азота

Для абсорбции оксидов азота используют воду, растворы щелочей и селективные сорбенты, кислоты и окислители.

Для интенсификации процесса используют катализатор. Степень очистки может достигать 97%.

Абсорбция щелочами. Для очистки газов применяют различные растворы щелочей и солей.

Селективные абсорбенты . Для очистки газов от NО при отсутствии в газовой фазе кислорода могут быть использованы растворы FeSО4 , FeCl, Nа2 S2 O3 , NаНСО3 .

Раствор FeSО4 является наиболее доступным и эффективным поглотителем. В качестве абсорбента могут быть использованы и травильные растворы, содержащие FeS04 . Поглотительная способность раствора зависит от концентрации FeSО4 в растворе, температуры и концентрации NО в газе.

Адсорбция оксидов азота.

Как абсорбционные, так и адсорбционные приемы поглощения слабо окисленных нитрозных газов малоэффективны.

В промышленной практике очистки отходящих газов от оксидов азота использование адсорбентов весьма ограничено.

Эффективными поглотителями NO2 являются активные угли, но их недостаток в том, что при контакте с газом они нагреваются и возможно воспламенение и взрыв. Возможно использование других адсорбентов: селикогели, алюмогели и др.

Методы каталитической и термической очистки газов. Для обезвреживания газов от оксидов азота применяют высокотемпературное каталитическое восстановление – процесс происходит при контактировании нитрозных газов с газами-восстановителями на поверхности катализаторов; селективное каталитическое восстановление – используемый восстановитель реагирует с NOх и почти не взаимодействует с находящимся в газах кислородом; разложение гетерогенными восстановит елями – процесс может проходить как с использование катализатора, так и без использования его.

Очистка газов от оксида углерода

Для очистки газов от диоксида углерода используют абсорбцию или промывку газа жидким азотом. Абсорбцию проводят также водно-аммиачными растворами закисных солей ацетата, формиата или карбоната меди.

Абсорбция оксида углерода медь-алюминий-хлоридными растворами. Этот метод применяют при наличии в газе кислорода и больших количеств диоксида углерода. Процесс основан на химической абсорбции оксида углерода раствором смешанной соли тетрахлорида меди и алюминия в различных ароматических углеводородах с образованием комплекса с оксидом углерода.

Предварительно осушенный газ подают в абсорбер, который орошается регенерированным раствором. Насыщенный оксидом углерода раствор, выходящий из абсорбера, подогревают до 100о С и направляют в промежуточный десорбер, где поддерживают давление 0,25 МПа. Десорбер орошают регенерированным раствором для поглощения СО, выделяющегося при десорбции. Частично регенерированный раствор после теплообменника поступает в регенератор, где регенерируется при 135–180°С. Затем раствор охлаждают и подают в отстойник, из которого направляют в абсорбер и десорбер. Выделенный из газовых потоков растворитель (толуол) возвращают в систему приготовления раствора.

Методы каталитической и термической очистки газов. Для окисления СО используют марганцевые, медно-хромовые и содержащие металлы платиновой группы катализаторы. В зависимости от состава отходящих газов в промышленности применяются различные технологические схемы очистки.

Адсорбция паров летучих растворителей

Рекуперация органических растворителей имеет как экономическое, так и экологическое значение. Выбросы паров растворителей происходят при их хранении и при использовании в технологических процессах. Для их рекуперации наибольшее распространение получили методы адсорбции.

Улавливание паров возможно любыми мелкопористыми адсорбентами: активными углями, силикагелями, алюмогелями, цеолитами, пористыми стеклами и т.п. Однако активные угли, являющиеся гидрофобными адсорбентами наиболее предпочтительны для решения этой задачи: при относительной влажности очищаемых паровоздушных или парогазовых потоков до 50% влага практически не влияет на сорбируемость паров органических растворителей. Рентабельность адсорбционных установок с использованием активных углей зависит от концентрации в очищаемых газах паров летучих органических растворителей.

Поглощение паров летучих растворителей можно проводить в стационарных (неподвижных), кипящих и плотных движущихся слоях поглотителя, однако в производственной практике наиболее распространенными являются рекуперационные установки со стационарным слоем адсорбента, размещаемым в вертикальных, горизонтальных или кольцевых адсорберах. Адсорберы вертикального типа обычно используют при небольших потоках подлежащих очистке паровоздушных (парогазовых) смесей, горизонтальные и кольцевые аппараты служат, как правило, для обработки таких смесей при высоких (десятки и сотни тысяч кубометров в час) скоростях потоков.

С целью достижения более глубокой очистки обрабатываемых потоков от паров летучих растворителей используют комбинированные методы, сочетающие различные процессы.

Методы каталитической и термической очистки газов. Токсические пары органических веществ подвергают деструктивной каталитической очистке. Катализаторы для таких процессов приготовляют на основе меди, хрома, кобальта, марганца, никеля, платины и др. металлов. В отдельных случаях применяют природные материалы.

К-во Просмотров: 613
Бесплатно скачать Реферат: Методы очистки пылегазовых выбросов