Реферат: Методы решения биматричных игр
Мы предполагаем уделить основное внимание случаю, когда у каждого из игроков имеется ровно две стратегии, т. е. случаю т = п = 2. Поэтому нам кажется уместным выписать приведенные выше формулы именно для такого случая.
В 2 ´ 2 биматричной игре платежные матрицы игроков имеют следующий вид
, ,
вероятности
биматричная игра решение
а средние выигрыши вычисляются по формулам
где
,
Сформулируем основное определение.
Определение. Будем считать, что пара чисел
, ,
определяет равновесную ситуацию , если для любых р и q , подчиненных условиям одновременно выполнены следующие неравенства
(1)
Пояснение . Выписанные неравенства (1) означают следующее: ситуация, определяемая смешанной стратегией (р*, q *), является равновесной , если отклонение от нее одного из игроков при условии, что другой сохраняет свой выбор, приводит к тому, что выигрыш отклонившегося игрока может только уменьшиться. Тем самым, получается, что если равновесная ситуация существует, то отклонение от нее невыгодно самому игроку.
Теорема 1 (Дж. Нэш). Всякая биматричная игра имеет хотя бы одну равновесную ситуацию (точку равновесия) в смешанных стратегиях.
Итак, равновесная ситуация существует. Но как ее найти?
Если некоторая пара чисел (р*, q *) претендует на то, чтобы определять ситуацию равновесия, то для того, чтобы убедиться в обоснованности этих претензий, или, наоборот, доказать их необоснованность, необходимо проверить справедливость неравенств (1) для любого р в пределах от 0 до 1 и для любого q впределах от 0 до 1. В общем случае число таких проверок бесконечно. И, следовательно, действенный способ определения равновесной ситуации нужно искать где-то в ином месте.
Теорема 2. Выполнение неравенств
(1)
равносильно выполнению неравенств
(2)
Иными словами, для того, чтобы убедиться в обоснованности претензий пары (р*, q *) на то, чтобы определять равновесную ситуацию, нужно проверить справедливость неравенства
только для двух чистых стратегий игрока А (р = 0 и р = 1 ) и неравенства
только для двух чистых стратегий игрока В ( q = 0 иq = 1).
Четыре неравенства (2) позволяют провести поиск точки равновесия вполне конструктивно.
Запишем средние выигрыши игроков А и В в более удобной форме.
Имеем
Обратимся к первой из полученных формул.
Полагая в ней сначала р = 1, а потом р = 0, получаем,
Рассмотрим разности
Полагая
получим для них следующие выражения
В случае, если пара (р , q ) определяет точку равновесия, эти разности неотрицательны
Поэтому окончательно получаем
Из формул для функции нв ( р, q ) при q = 1 и q = 0 соответственно имеем
Разности
и