Реферат: Методы решения систем линейных неравенств

max(f)=+∞.

В нашем примере прямая f=aпересевает область ABCDEв точке С(4;1). Поскольку это последняя точка пересечения, max(f)=f(C)=f(4;1)=19.


Симплекс-метод

Реальные задачи линейного программирования содержат очень большое число ограничений и неизвестных и выполняются на ЭВМ. Симплекс-метод – наиболее общий алгоритм, использующийся для решения таких задач. Суть метода заключается в том, что после некоторого числа специальных симплекс- преобразований ЗЛП, приведенная к специальному виду, разрешается. Для того, чтобы продемонстрировать симплекс-метод в действии решим, с попутными комментариями следующую задачу:

    Для того, чтобы приступить к решению ЗЛП симплекс методом, надо привести ЗЛП к специальному виду и заполнить симплекс таблицу.

Система (4) – естественные ограничения и в таблицу не вписываются. Уравнения (1), (2), (3) образуют область допустимых решений. Выражение (5) – целевая функция. Свободные члены в системе ограничений и области допустимых решений должны быть неотрицательны.

В данном примере X3, X4, X5 – базисные неизвестные. Их надо выразить через свободные неизвестные и произвести их замену в целевой функции.

Теперь можно приступить к заполнению симплекс-таблицы:

Б. X1 X2 X3 X4 X5 C
X3 0 -1 1 1 0 1
X4 0 1 -1 0 1 1
X5 1 1 1 0 0 2
f 0 -6 7 0 0 3

В первом столбце данной таблицы обозначены базисные неизвестные, в последнем – значения свободных неизвестных, в остальных – коэффициенты при неизвестных.

    Для того чтобы найти максимум функции fнадо с помощью преобразований методом Гаусса сделать так, чтобы все коэффициенты при неизвестных в последней строке были неотрицательными (для нахождения минимума, сделать так, чтобы все коэффициенты были меньше или равны нулю).

Б X1 X2 X3 X4 X5 C
X3 -1 1 1 0 0 1
X4 1 -1 0 1 0 1
X5 1 1 0 0 1 2
f -6 7 0 0 0 3

Для этого выбираем столбец с отрицательным коэффициентом в последней строке[2] (столбец 3) и составляем для положительных элементов данного столбца отношения свободный член/коэффициент (1/1; 2/1)[3] . Из данных отношений выбираем наименьшее и помечаем соответствующую строку[4] .

Нами выбран элемент в ячейке (3;3). Теперь с помощью метода Гаусса обнуляем другие коэффициенты в данном столбце, это приводит к смене базиса и мы на один шаг приближаемся к оптимальному решению.

Б X1 X2 X3 X4 X5 C
X3 0 0 1 1 0 2
X1 1 -1 0 1 0 1
X5 0 2 0 -1 1 1
f 0 1 0 6 0 9

Как видно из таблицы теперь все коэффициенты в последней строке больше либо равны нулю. Это означает, что нами найдено оптимальное значение. Свободные неизвестные равны нулю, значению базисных неизвестных и максимуму функции f соответствует значения свободных неизвестных.

Метод искусственного базиса

Если после подготовки ЗЛП к специальному виду для решения симплекс методом, не в каждой строке системы ограничений есть базисная переменная (входящая в данную строку с коэффициентом 1, а в остальные строки с коэффициентом 0), то для решения данной ЗЛП надо воспользоваться методом искусственного базиса.

Суть метода довольно проста:

  1. К строкам, в которых отсутствует базисная переменная добавляется по одной искусственной базисной переменной.
  2. Новая задача решается Симплекс-методом, причем все искусственные базисные переменные должны стать свободными (выйти из базиса) и их сумма должна равняться нулю, в обратном случае в данной системе невозможно выделить допустимый базис.

Рассмотрим следующий пример:

min(f)-?

    В первом уравнении нет базисных неизвестных. Введём искусственную базисную неизвестную Y1 и заполним первую симплекс-таблицу

Для того, чтобы избавится от искусственной базисной неизвестной нам предстоит решить вспомогательную задачу:

F=Y1→min

Выражая базисную неизвестную Y1 через свободные получаем:

F+4X1+X2=4 →min

Б X1 X2 X3 X4 Y1 С
Y1 4 1 0 0 1 4
X4 11 3 -5 -1 0 12
F 4 1 0 0 0 4

Выбираем элемент в ячейке (3;2) и делаем шаг.

Б X1 X2 X3 X4 Y1 С
X2 4 1 0 0 1 4
X4 -1 0 -5 -1 -3 0
F 0 0 0 0 -1 0

min(f)=0, все коэффициенты в последней строке меньше или равны нулю, следовательно мы перешли к новому естественному базису. Теперь можно решать основную задачу.

Принцип двойственности

В реальной практике встречаются задачи в которых число неизвестных больше числа ограничений. Такие задачи решать в их первозданном виде довольно трудно, но, применяя принцип двойственности можно заметно упростить решение, поскольку в двойственной задаче будет, наоборот, больше ограничений, чем переменных.

Для того чтобы показать, как принцип двойственности может упростить процесс решения приведем следующий пример:

К-во Просмотров: 172
Бесплатно скачать Реферат: Методы решения систем линейных неравенств