Реферат: Методы, техника и технологии социологического исследования
где N — численность генеральной совокупности, n — численность выборочной совокупности.
Таким образом, шаг выборки, а его еще называют «интервалом скачка» или просто «интервалом», — это математический показатель, рассчитанный как отношение объема генеральной совокупности к объему выборки. Он показывает, сколько номеров в списке фамилий людей, вошедших в генеральную совокупность, надо пропустить (через сколько перешагнуть), чтобы в итоге получить список выборочной совокупности. Буквально шаг выборки означает расстояние между соседними фамилиями респондентов, измеренное количеством отбракованных фамилий из списка генеральной совокупности.
Итак, в основу систематической выборки положены не вероятностные процедуры, а алфавитные списки, картотеки, схемы, которые обеспечивают равновероятное попадание в выборку всех единиц генеральной совокупности.
Несмотря на свои преимущества, систематическая выборка может иногда иметь своим результатом предубежденную выборку. Такая ситуация возникает, например, когда элементы размещены в списке, ранжированном по каким-то характеристикам. В этой ситуации определение места начала случайного отбора будет влиять на средние характеристики всей выборки. Например, если студенты расставлены в списке в соответствии со средним оценочным баллом от высшего к низшему, систематическая выборка, включающая студентов, стоящих в списке под номерами 1,51,101, будет иметь более низкий средний балл, чем выборка, включающая студентов под номерами 50, 100 и 150. Каждая новая выборка будет давать другой средний балл, который представляет собой предубежденную картину студенческой популяции.
1.1.3) Районированная и стратифицированная выборки. Если генеральная совокупность велика, а такое в эмпирическом исследовании случается очень часто, то приходится разделять обследуемую совокупность на более или менее однородные части, а затем осуществлять отбор единиц внутри этих частей.
Если деление происходит по стратам (социальным группам), то выборку именуют стратифицированной, если по экономико-географическим районам, то — районированной.
Районированная выборка — вид выборки, при котором отбору предшествует процедура районирования (расслоения, стратификации), т.е. разделения исходной совокупности на статистически или качественно однородные подсовокупности, называемые слоями, стратами или типичными группами. Отбор единиц, который может носить как случайный, так и направленный характер, производится независимо из каждого слоя, поэтому районированная выборка равносильна ряду выборок, извлеченных из меньших совокупностей - страт.
Стратифицированная случайная выборка (в узком значении) основана на выборке по каждой страте отдельно. Это повышает точность результатов, либо уменьшает время, силы и стоимость исследования, допуская меньшие размеры выборки при заданном уровне точности. Например, известно, что бедность наиболее часто встречается среди пожилых, безработных и в монородительских семьях. Исследуя проблемы бедности, можно с равным успехом выбрать в качестве объекта любую из трех страт. В отобранных районах или стратах выбор единиц обследования проводится по вероятностному методу.
Основная цель всякого расслоения — повышение точности выборочных оценок. Слои выделяются таким образом, чтобы дисперсия изучаемых переменных внутри слоев была значительно меньше, чем между ними. При расслоении вариация между слоями не входит в среднюю ошибку выборки, а компенсируется самой процедурой выделения слоев. Поэтому расслоение позволяет добиться более высокой степени точности оценок по сравнению с простым случайным отбором. Если каждый слой представляет собой статистически однородную группу, то для любого из них даже выборка малого объема позволит получить достаточно точные оценки, которые, будучи объединены, дадут хорошую оценку для всей совокупности.
Различают стратификацию одномерную и многомерную в зависимости от того, один или несколько признаков положены в основу разделения совокупности. Эти признаки должны иметь тесную связь с изучаемыми переменными, от их выбора в высокой степени зависит эффективность расслоения.
1.1.4) Гнездовая выборка. Противоположность районированной и стратифицированной выборке составляет гнездовая выборка.
Гнездовая выборка — вид выборки, при котором отбираемые объекты представляют собой группы или гнезда (кластеры) более мелких единиц. Гнездом называют единицу отбора высшей ступени, состоящую из более мелких единиц низшей ступени. В выборку могут быть включены как все единицы низшего уровня, так и их часть. Число единиц, образующих гнездо, называют его размером.
В качестве гнезд выступают населенные пункты, районы, дома, подъезды, предприятия, цехи, бригады.
Гнездовой отбор обладает большими организационными преимуществами — проще осуществлять отбор и обследование нескольких компактных групп, чем десятков или сотен отдельных единиц. Технические преимущества гнездового отбора особенно ощутимы при построении территориальной выборки. Отбор небольшого числа территориальных сегментов (населенных пунктов, районов, жилых кварталов и т.п.), затем выборочный или сплошной опрос проживающего в них населения существенно уменьшают стоимость исследования и сроки проведения.
Процедурно такой метод применить легче, чем вероятностный либо районированный. Проблемы, которые возникают здесь, связаны с определением величины гнезда, количеством гнезд, которые надо обследовать, их размещением в генеральной совокупности.
Основные рекомендации при выборе гнезд сводятся к тому, чтобы различия между гнездами были бы по возможности более неоднородными. Это правило прямо противоположно основному принципу расслоения, в соответствии с которым выигрыш в точности тем больше, чем более однородными будут выделенные слои. Другая рекомендация касается выбора размера гнезд: большое число малых гнезд предпочтительнее малого числа крупных.
1.2) Методы невероятностной (неслучайной) выборки
Неслучайная (невероятностная) выборка — это способ отбора единиц, при котором мы не можем заранее рассчитать вероятность попадания каждого элемента в состав выборочной совокупности, что, разумеется, не дает возможности рассчитать, насколько правильна (репрезентативна) выборка. По этой причине предпочтение обычно отдается вероятностной выборке, хотя иногда по условиям исследования оказывается единственно возможным провести неслучайную выборку.
Таким образом, можно заранее сказать, что по содержательным критериям невероятностная (она же целевая и целенаправленная) выборка не хуже вероятностной, а может быть, и лучше. Ее недостатки: невозможность установить степень репрезентативности и более высокая стоимость (с точки зрения затрат она обычно превосходит вероятностную на несколько порядков). Но есть и преимущества — более глубокое, качественное и всестороннее раскрытие предмета по сравнению с вероятностной.
Известны следующие разновидности неслучайной выборки:
- квотная выборка,
- метод снежного кома,
- метод основного массива,
- метод стихийного отбора.
Несомненно, принцип отбора единиц в неслучайной выборке отличается от традиционного. Рассмотрим, чем именно.
Как и для вероятностного способа отбора, основная цель неслучайного отбора состоит в получении совокупности, репрезентирующей изучаемый объект. Однако в отличие от вероятностной выборки статистические выводы обо всем множестве объектов в этом случае делать не совсем правомерно. Эти выводы могут с большей или меньшей степенью вероятности распространяться лишь на генеральную совокупность (которая не всегда совпадает с объектом исследования).
Выделяют два основных вида неслучайного отбора:
♦ направленный отбор (другие названия — целенаправленный, целевой, выбор по усмотрению);
♦ стихийный.