Реферат: Микронизация ибупрофена методом RESS
Рис.4. Влияние температуры предрасширения на средний размер частиц (Pэкстракции =150 бар, Тэкстрации =35о С)
Рис.5. Влияние давления экстракции на средний размер частиц (Тэкстрации =35о С, длина капилляра=8мм, расстояние распыления =60мм, угол столкновения=90о С)
Средние размеры частиц полученных из опытов 3 и 4 не попали на рис 4, так как было трудно определять показания термопары для температуры предрасширения в этих опытах. Результаты опытов 3. 4 не использовались в определении влияния температуры предрасширения, но так как наблюдалось незначительное изменение размеров частиц при изменении температуры предрасширения, результаты были включены в Рис. 5, Рис. 6, на которых представлено влияние других параметров RESS. В других источниках много исследований посвящено получением частиц нафталина методом RESS , в которых зависимости влияния температуры предрасширения на характеристики частиц не выявлено, в некоторых случаях даже сообщаются противоречивые результаты[5,7,8]. В данном случае нафталин используется в качестве примера, потому что это идеальное соединение, по которому имеется много данных. Мохамед (Mohamed) и другие[5], Лиу, Нагахама (Liu,Nagahama)[7] обнаружили что для нафталина увеличение температуры предрасширения приводило к увеличению среднего размера частиц. Оба исследования были проведены в нереакционной области, вследствие этого увеличение температуры предрасширения приводило к ненасыщению раствора, в результате происходило уменьшение степени пресыщения и таким образом размеры частиц увеличивались.
Рис. 6. Влияние расстояния распыления на средний размер частиц (Pэкстракции =150 бар, длина капилляра=8мм, угол столкновения=90о С)
Однако, Турк (Тurk) [8] получил противоречивые результаты, по влиянию температуры предрасширения, в пределах 75-95 о С, на частицы нафталина. Температуры предрасширения используемые в исследованиях выполняемых Мохамедом(Mohamed) и другими[5],Лиу, Нагахамой (Liu,Nagahama)[7] находится в диапазонах 110-170 о С и 87-120 о С соответственно. Мохамед(Mohamed) и другие [5] также изучали влияние температуры предрасширения на частицы ловастанина. В отличие от частиц нафталина, было обнаружено, что частицы ловастанина совсем нечувствительны к изменением температуры предрасширения. Когда насыщенный сверхкритический раствор нагревается перед расширением, вне реакционной зоны, полученный ненасыщенный раствор приводит к меньшей степени пресыщения и таким образом к большему размеру частиц. В тоже самое время, ненасыщенный раствор предотвращает образование частиц в капилляре и позволяет уменьшить зародышеобразования и время роста частиц. Таким образом, в этом исследовании именно это свойство объясняет уменьшение размера частиц с увеличением температуры предрасширения.
2.2 Влияние давления экстракции.
Концентрация растворенного вещества в сверхкритическом растворителе может быть варьирована изменением давления экстракции и температуры. На всём протяжении эксперимента температура была постоянной 35 о С. Влияния давления на размер и морфологию частиц была изучена при трёх различных значениях давления (130,150 и 170 бар). Не было получено явной зависимости среднего размера частиц от давления экстракции (Рис. 5). На рис. 5 показаны средние результаты всех экспериментов при тех же значениях давлениях. Данные по растворимости ибупрофена в СО2 при 35 о С взятые из Чарунчатракул (Charoenchaitrakool)и другие [19] показывают, что диапазон давления, изученные в данной работе, принадлежат к пологой области в растворимости. Другими словами растворимость ибупрофена в СО2 при 35 о С и в пределах 130-170 бар меняется не значительно. Следовательно, не наблюдается изменения размеров и морфологии частиц.
2.3 Эффект от расстояния распыления
Кроме влияния экстракционных условий и условий предрасширения на размер и морфологию частиц, условия после расширения, такие как дистанция распыления и угол столкновения образованной свободной струи на конце сопла, могут иметь явное влияние на параметры частиц, так как зародышеобразования и рост частиц продолжается в области после расширения[15].Теоретические расчёты Хелфгена(Helfgen)[и других 15] показывают, что частицы продолжают расти после диска Маха, где свободная струя встречается с фоновыми газами в области после расширения. Когда расстояние распыления небольшое, то и время, которое частицы находятся в области роста, также не большое. В виду этого перед столкновением с поверхностью сбора можно избежать роста частиц. Изменение расстояния распыления от 20 до 35 мм и до 60 мм при давлении 150 бар, при длине капилляра 8 мм, при этом угол столкновения равен 90о , приводило к увеличению среднего размера частиц и это явно видно из рис. 6. Те же самые результаты были получены Субром (Subra) и другими[12] для кофеина, тогда как Реверчон (Reverchon) и другие[13] , Чарунчатракул (Charoenchaitrakool) и другие [19] получили противоположные результаты влияния расстояния распыления для силициловой кислоты и частиц ибупрофена соответственно. Размеры частиц при расстоянии распыления 20 мм, получены из средних результатов опытов 1 и 2,что представлено на рис. 10. Кроме того размеры частиц, при расстоянии распыления 60 мм, являются средними значениями опытов 3,4, 11,12,16,17.
Максимальное различие в рабочие условиях в опыте 2(наименьшие размеры частиц и наименьшее стандартное отклонение) и в опыте 16 (наибольшие размеры частиц и наибольшее стандартное отклонение) было между их расстояний распыления (табл. 1).
2.4 Влияния угла столкновения.
Во многих RESS экспериментах плоскость сбора установлена под углом 90о по направлению к расширяющемуся раствору. Том и Дебендети (Tom и Debenedetti) [22] использовали стеклянную поверхность под углом 15о по направлению к потоку газа и Пиерико и другие(Peirico) [22] использовали стекло Перспекс под углом 35о по направлению к потоку газа. Оба исследователя не сравнивали свои результаты с результатами, полученными при 90о .
В этой работе поверхность сбора была наклонена под углом 45о и 90о . Когда поверхность была наклонена под углом 45о расстояние между концом капилляра и центром поверхности столкновения составило 35 мм, но другие точки поверхности были на разных расстояниях от капилляра. Средний размер частиц образцов наклоненной поверхности сбора вычислялся по частицам, осажденных под концом капилляра и в области вокруг неё. Результаты экспериментов, проведенных для исследования влияния угла столкновения, при давлении экстракции 150 бар и температуре 35 о , с длинной капилляра и дистанцией распыления 8 и 35 мм, соответственно, показали, что когда угол равен 90 о частицы получаются более мелкие, чем при 45о . Средние размеры частиц полученных из опытов 13,14,15 определяет размер частиц при 45о . Несмотря на различные температуры предрасширения, был взят средний размеры, так как размеры частиц меняются не значительно с изменением температуры предрасширения. При столкновении с поверхностью частицы расщепляются. И если площадь столкновения больше, то можно получить более мелкие частицы. Уменьшение угла столкновения, а также площади соударения, приводит к более мягким условиям столкновения и исключается расщепление частиц.
2.5 Влияние длины капилляра
Для изучения влияния длины капилляра на характеристики получающихся частиц длину капилляра меняли от 8 до 12 мм при постоянном диаметре капилляра 180 мкм, другими словами отношение длины к диаметру (L/D) увеличивали от 44, 4 до 66,6. Данные приведенные показывают, что чем короче капилляр, тем больше частицы. Уменьшение размера частиц с увеличением длины капилляра может, объясняется следующим. Когда длина капилляра короче, уменьшение давления начинается раньше в расширяющем устройстве, даже на входе в капилляр. Так как снижение давления начинается раньше в коротких капиллярах, по сравнению с длинными происходит более последовательное снижения давления вместо ожидаемого более быстрого расширения. Более последовательное снижение ведёт к снижению пресыщения и степени зародышеобразования, что приводит к возрастанию образования более крупных частиц.
Вышеупомянутые результаты получены на основе средних размеров частиц, вычисленных по средним значениям величины распределения.Как видно из рис. 7, имеется небольшое количество частиц размером выше 7 мкм, что приводит к увеличению значение среднего размера частиц. Среднее значения распределения 4,2 мкм, тогда как по методике 3,5 мкм. По этой причине влияние параметров RESS было также оценено в соответствии с методикой. Результаты показывают, что вышеупомянутые обсуждения с средним значения по-прежнему верны для давления экстракции, расстояния распыления, угла столкновения и длины капилляра, однако исчезают изменение влияния температуры предрасширения на размер частиц.
Рис. 7. PSD частиц,