Реферат: Микроорганизмы
Несмотря на простоту организации, бактерии могут реагировать на определённые раздражители, двигаясь в направлении увеличивающейся концентрации пищи или кислорода. Бактерии обладают специфической чувствительностью к питательным различным веществам, например сахаром. После того как клетки получают сигнал о «привлекающих» (аттрактантах) или «отталкивающих» (репеллентах) веществах, они могут выбрать нужное им направление движения. Аттрактанты вызывают вращение жгутиков против часовой стрелки, а репелленты – наоборот, по часовой стрелки. Таким образом «пробежки» совершаются за счёт вращения жгутиков, а «кувыркание» - за счёт вращательного движения. При длительном движении жгутики работают вместе и собираются в пучок на заднем конце клетки, несмотря на то что расположены практически по всей поверхности.
Совершенно иной способ движения обнаружен у нитчатых цианобактерий и у бактерий, лишённых жгутиков. Движение этих микроорганизмов представляет собой скольжение, но может включать и вращение вдоль продольной оси клетки. Короткие сегменты, отчленённые от колонии цианобактерий могут скользить со скоростью порядка 10 мкм/с. Движению способствуют выделения слизи через споры клеточной оболочки и образование сократительных волн на её внешней поверхности.
Размножаются микроорганизмы делением клетки на две равные или почкованием, что особенно характерно для многих дрожжей. Только некоторым бактериям свойственно образование специальных «органов» размножения (цианобактерии, миксобактерии, актиномицеты). Для переживания неблагоприятных условий, некоторые бактерии в своём жизненном цикле имеют стадию покоя. У одних бактерий такая стадия покоя связана с образованием одной или реже нескольких эндоспор. После разрушения клетки- эти споры попадают в окружающею среду и т.к., они крайне устойчивы к всякого рода внешних воздействий (температуре, радиации, высушиванию и др) то могут сохранятся десятки, сотни и даже тысячи лет. При попадание в благоприятные условия такие споры прорастают, давая вегетативные клетки. Некоторые другие бактерии образуют покоящие формы в виде цист, экзоспор и микроспор.
Для существования микроорганизмов необходимы источники углерода и энергии. По типу потребляемого углерода подразделяются на гетеротрофов (используют углерод в органической форме) и автотрофов (используют углерод углекислот). По типу источника энергии их можно разделить на фототрофов (используют солнечный свет) и хемотрофов (у них источник энергии – окисление органических или неорганических веществ). По типу источника электронов, используемых в окислительно – восстановительных реакциях различают органотрофов и литотрофов, получающих электроны из неорганических соединений (H2O и H2S). У большинства бактерий окислительно – восстановительные процессы проходят с использованием атмосферного кислорода, т.е. отщепляющихся при окислении субстрата, водород соединяется с кислородом воздуха. Такой тип дыхания называется аэробным. У некоторых микроорганизмов акцептором водорода является кислород, содержащийся в связанном состоянии в неорганических соединениях азота или серы – в нитратах или сульфатах. Такое дыхание проходит в отсутствии атмосферного воздуха и называется анаэробным дыханием. Среди эукариот и прокариот известны микроорганизмы способные переключатся с кислородного существования на бескислородное их называют факультативными анаэробами (кишечная палочка). Наряду с этим существует и строгие анаэробы, которые при контакте с кислородом воздуха погибают. К таким относятся метанообразующие бактерии и др. В отличие от животных, микроорганизмы не могут поглощать высокомолекулярные вещества. Для их роста и развития необходимы низкомолекулярные вещества. Для роста и развития необходимы кроме органических и неорганических веществ: N.P.Na.K.Fe и другие макроэлементы, а также микроэлементы Co.Mo.Zn.Cu.W и другие. Как правило, для каждого из требуемых веществ, клетка имеет свою транспортную систему, которая локализована в цитоплазматической мембране. Важнейшим после углерода элементом для бактерий является азот. Часть микроорганизмов приобрела способность использовать его в газообразном состоянии. Этот процесс называется азотофикацией и имеет огромное экологическое и практическое значение.
Я попробую охарактеризовать более известные группы микроорганизмов.
а) Гетеротрофы- они не способны синтезировать органические соединения из простых неорганических, а должны получать их в готовом виде. Самая большая группа гетеротрофных бактерий – это «сопробионты». Они питаются мёртвым органическим материалом. Сопробионты бактерии и грибы ответственные за разложение и круговорот органического вещества в почве; многие образуемые при этом соединения имеют специфический запах.
б) Хемоавтотрофные бактерии получают энергию, необходимую для осуществления синтетических реакций, путём окисления неорганических веществ, которые обеспечивают их энергией подобно свету у фотосинтезирующих организмов. Бактерии, обитающие в глубоководных кратерах при температуре выше 360 градусов тоже хемосинтетики. Они получают энергию превращая сульфид водорода в серу, и кроме того обеспечивают энергией целое сообщество организмов сред – щих в полной темноте океанических глубин.
в) Архебактерии – это строгие анаэробы, метанообразующие бактерии – они обитают в желудочно – кишечном тракте жвачных животных, в сточных водах, болотах и в глубине моря. Большинство запасов природного газа связанно с деятельностью метанообразующих бактерий. Метанобактерии отличаются большим морфологическим разнообразием. Однако К.Уозом и его коллегами из Иллинского университета было доказано, что различные формы метанобактерий имеют гамотологические последовательные рРНК, что свидетельствует об их родстве. Удивительным оказался факт, что эти последовательности оснований резко отличаются от таковых в рРНК других бактерий и эукариот. На основании изложенных фактов было высказано предположения, что метанобактерии появились на Земле около 3-х миллиардов лет назад, когда атмосфера была бескислородой, но обогащённой CO2 и H2. Сейчас они обитают только в пределённых специфических условиях. Отличие метанобактерий от других групп бактерий привели к тому, что их можно отнести к отдельному царству – архебактерий.
А теперь можно подвести итог на основе вышеизложенного. Какие микробы приносят пользу, а какие вредят и даже вызывают многие смертельные, иногда болезни человека, животных и растений.
а) Различные группы микроорганизмов участвуют в отдельных этапах разложения и круговорота веществ, происходящих в почве. Многие бактерии и грибы располагают углеродосодержащиеся соединения и выделяют в атмосферу СО2.Наиболее важны органические вещества растительного – целлюлоза, лигнин, пектины, крахмал и сахар. Установлено, что более 90% СО2 образуется в биосфере в результате деятельности бактерий и грибов. Многие микроорганизмы используют процесс аммонификации – разложение аминокислот с выделением ионов аммония (NH2). Аммоний может окислить до нитрата (NO2-), а нитрит до нитрата (NO4-). Окисления аммония в нитриты и нитраты называют нитрификацией. Этот процесс идёт с выделением энергии. Де нитрификация – превращение нитратов в газообразный азот или оксид азота – приводит к уменьшению азота в почве. Процесс обратный де нитрификации, называется фиксацией азота. Из всех живых организмов только бактерии нескольких родов способны к фиксации атмосферного азота. Наиболее известные из них – это симбмотические бактерии, которые образуют клубеньки на корнях бобовых и некоторых других растений.
б) Болезни человека.
Некоторые болезни человека передаются воздушно – капельным путём. Такие как: бактериальная пневмония, коклюш, дифтерит. В настоящее время дифтерит встречается довольно редко, поскольку большинство детей вакцинируют против него. Возбудитель туберкулёза остаётся ещё причиной смерти многих людей, несмотря на усовершенствование методов диагностики лечения. Чума – острое инфекционное заболевание человека и животных. Вызывается бактериальной – чумной палочкой. Холера вызывает острые кишечно-желудочные расстройства и обезвоживание организма. Возбудитель – бактерия холерный вибрион. Переносится через воду, пищу.
Целый ряд других болезней бактериального происхождения передаётся через воду и пищу. Примером могут служить брюшной тиф, паратиф, дизентерия. Бруцеллез опасен как для животных, так и для человека, который заражается через молоко от инфицированной коровы. В 1976 году была впервые обнаружена «болезнь легионеров», которая передаётся через питьевую воду. От этой таинственной болезни лёгких погибло 34 члена Американского легиона на конференции в Филадельфии. Оказывается, что данная болезнь вызывается небольшой палочко – видной бактерией с жгутиками. Эти бактерии из тёплой воды попадают в организм человека и быстро размножаются в моноцитах, белых клетках крови, играющею немалую роль в иммунитете. Установлено, что «болезнь легионеров» охватила в США около 50 тыс. человек, причём 15 – 20% с летальным исходом. Бактерии вызывают гниение продуктов питания и других органических материалов, и некоторые чрезвычайно опасны для человека.
в) Болезни растений.
Почти все растения подвержены бактериальному заражению. Большинство патогенов растений относятся к бациллам (палочковидным формам), многие из них паразитируют в растении – хозяине. Симптомы заболеваний, вызваны патогенными бактериям, разнообразны, большинство случаев – это пятна на стеблях, листьях, цветках и плодах. Многие наносящие экономический ущерб заболеваний растений, такие как ожог, яблонь и груши приводит к гибели молодых деревьев в течение одного сезона. Бактериальная мягкая гниль поражает мясистые запасающие части овощей, такие как клубни (картофель), луковицы, а также сочные плоды – томаты, баклажаны и мн. др. Бактериальные вилы проводящих тканей поражают только травянистые растения. Галл побегов, Галл сахарного тростника, волосяной или косматый корень, кольцевая гниль картофеля, пятнистость плодов, рак цитрусовых, ожог орехов, парша картофеля. Все эти заболевания растений вызваны микроорганизмами.
Микроорганизмы – это живые существа, имеющие своё строение и функции. Это существа, обитающие не в определённой точке Земного шара, а по всей планете. Их можно отнести: некоторых к полезным, а некоторых к вредителям, которые приводят к массовой гибели человека, животных и растений.
С древних времён человек использовал микроорганизмы для заготовки в прок фруктов и овощей, получение кисломолочных продуктов, в хлебопечении, виноделии, пивоварении. Сейчас область значения применения микроорганизмов в научной промышленности, в такой как селекция. Как правило, природные штампы микроорганизмов обладают незначительной «дозой» полезного для человека признака, поэтому после выделения микроорганизмов с нужным свойством, возникает задача усилить это свойство. В настоящее время такие задачи можно решить с помощью традиционных методов селекции или новых методов генетической и клеточной инженерии.
Генетическая инженерия – конструирование функционально активных химических структур (рекомбинантных ДНК), с последующим введением их в клетку прокариотного или эукариотного организма.
Клеточная инженерия - конструирование клеток с основным геном, путём искусственного объединения целых клеток. Селекция микроорганизмов и работа с их генетическим материалом значительно облегчает благодаря целому ряду свойств этих организмов. Они быстро растут и размножаются. Известно несколько этапов селекции.
1этап – выделение или выбор микроорганизма, способного производить необходимый продукт. Выбор одного из многих разных организмов, способных производить один и тот же продукт, определяется многими факторами, например: продуктивностью, технологичностью организма, его изученностью и др.
2 этап – усиление способности отобранного организма к синтезу необходимого продукта.
Наиболее эффективный способ получения высокопродуктивных штампов – мутагенез.С некоторой долей условности можно считать, что бактериальная хромосома состоит из структурных и регулярных генов. В синтезе любого, даже самого простого вещества задействовано множество генов и ферментов. Для синтеза необходимо, чтобы в клетку поступил исходный материал – субстракт. Поступивший в клетку субстракт должен подвергнутся превращениям в процессе происхождения по метаболистическим путям, в результате чего образуется предшественник соответствующего продукта. В этом процессе также задействовано множество структурных и регулярных генов и ферментов. Таким образом, мутация, произошедшая в том или другом гене, может отразиться на образовании нужного продукта. В месте с тем, не всякая мутация может привести к сверхсинтезу интересующего селекционера вещества. Мутантные организмы могут быть получены и без какого-либо внешнего воздействия, в результате спонтанных мутаций. Однако вероятность их возникновения невелико. Для увеличения количества мутантных организмов используют индуцированный мутагенез. Клетки обрабатывают различными мутагенами: ионизирующим излучением или, чаще, УФ- светом; химическими мутагенами в виде растворов алкилирующих агентов или в виде газов. После определённого времени контакта мутагена с организмом, мутаген удаляют, а клетки высевают на соответствующею среду. В селекционной работе обычно используют такие дозы мутагенов, после воздействия которых выживает от 0, 1 до 50-80% клеток. Среди колоний образованных клетками, подвергшимися действию мутагенов, проводится отбор мутантов с желательными свойствами. Известны два основных пути отбора мутантных штампов. Первый – это проверка результатов «случайных» мутаций с количественной оценкой искомого признака, например, синтеза аминокислоты, витамина и др. Этот приём используется в том случае, если селекционер не имеет сведений, его регуляции и т.д. При этом из выросших колоний отбирается подряд необходимое их количество и все они тотально проверяются на способность к синтезу искомого вещества.
Наиболее активные из отобранных продуцентов снова проводят мутагенному воздействию. Второй – это отбор мутантов, устойчивых к структурным аналогам метаболитов - аминокислот, пуринов, пиримидинов. Согласно этому методу, клетки, отобранные мутагеном, просевают в чашки Петри на минимальную среду, содержащий структурный аналог метаболита, например, аминокислоты. Этот аналог поступает в клетку и имитирует (для регуляторных систем клетки) избыток этого метаболита в среде, вызывая тем самым подавление синтеза настоящей аминокислоты. Клетки при этом расти, не могут т.к. структурный аналог аминокислоты не встраиваетс?