Реферат: Минимизация функции многих переменных Приближённые численные методы Метод Монте-Карло
откуда получаем критические точки: А(0;0); В(3;2). Исследуем эти точки. Для этого нам нужно выяснить, в каждой из этих точек, к какому виду принадлежит квадратичная форма:
(10)
(11)
(12)
(13)
В точке A(0;0) имеем:
,
так что , и условия критерия
Сильвестра не дают ответа на вопрос о наличии экстремума в этой точке.
Для решения этого вопроса надо привлечь старшие производные и формы более высокого порядка, для которых соответствующей общей теории пока нет, поэтому нужно обращаться к численным исследованиям.
В точке B(3;2) имеем:
,
получаем матрицу квадратичной формы:
.
т.е. по критерию Сильвестра B(3;2) является точкой максимума:
2. Метод градиентного спуска.
Как мы видели из последнего численного примера, строгий аналитический метод не всегда приводит к цели (случай, когда в критической точке). В подобных, и в более сложных случаях применяют различные приближённые аналитические методы, которые в математическом смысле иногда менее строго обоснованы, но, тем не менее порой приводят к желаемому результату. К таким методам относятся и градиентные методы наискорейшего спуска.
Пусть, нам нужно найти . Рассмотрим некоторую точку и вычислим в этой точке градиент функции :
(14)
где - ортонормированный базис в пространстве . Если , то полагаем:
(15)
где , а выбирается из условия сходимости итерационного процесса:
(16)
где , а выбираются из условия сходимости. Формулу (16) можно расписать в виде:
первое приближение; (17)
второе приближение; (18)
………………………..
m-тое приближение; (19)