Реферат: Многогранник максимального объема
11 «А» класса
ГУО СОШ№22 г. Гомеля
Гончарова Дмитрия Евгеньевича
Научный руководитель –
Горский Сергей Михайлович, учитель математики Государственного учреждения образования СОШ №22 г.Гомеля
Гомель, 2009
Содержание
Введение
1 Развертка многогранника
2 Увеличение объема
Список использованных источников
Введение
Как известно телом максимального объема с заданной площадью поверхности является шар.
В данной же работе рассматривается следующая задача:
Дан произвольный многоугольник. Требуется сложить из него многогранник максимального объема.
Теорема Александрова (1932) дает нам достаточные и необходимые условия существования выпуклого многогранника (причем единственного) для заданной развертки, но не говорит о том, как его построить. Конструктивное доказательство теоремы Александрова было дано Волковым [2] в 1955г.
Но в рассматриваемой задаче у нас нет условий склейки многогранника, поэтому из данного многоугольника, варьируя условия склейки, можно получить несколько выпуклых многогранников. Например, из развертки куба, известной под названием латинский крест, можно получить 85 выпуклых многогранников 5 различных типов. Используя метод динамического программирования Эрик и Мартин Демайны [ErikDemaine, MartinDemain] совместно с Анна Любив [AnnaLubiw] и Жозеф О’Рурк [Joseph O’Rourke] в 2007 г. предложили алгоритм построения всевозможных выпуклых многогранников из данного многоугольника.
Казалось бы, что задача решена: используя алгоритм построить все возможные многогранники и из них выбрать многогранник с максимальным объемом, но дело осложняет теорема Бликера [Bleecker] (1996), утверждающая, что любой выпуклый многогранник, грани которого — треугольники можно преобразовать в невыпуклый многогранник большего объема. В 2006 г. Игорь Пак и Гурий Самарин независимо друг от друга доказали обобщение теоремы Бликера — из развертки любого выпуклого многогранника можно сложить невыпуклый многогранник большего объема.
В 2002 г. С.Н. Михалёвым был предложен пример двух многогранников — выпуклого и невыпуклого — составленных из одинаковых граней таких, что объём выпуклого многогранника меньше объема невыпуклого.
1. Развертка многогранника
Что такое развертка многогранника? Вы скажите — кусок картона, из которого можно свернуть данный многогранник. В этом есть правда, но это не вся правда. Оказывается, понятие развертки включает в себя больше, чем просто кусок картона.
Пусть имеется, вообще говоря, несколько многоугольников, у которых каждая сторона отождествлена с одной и только одной стороной того же или другого многоугольника этой совокупности. Это отождествление (или склеивание) сторон должно удовлетворять еще двум условиям:
1) отождествляемые стороны имеют одинаковую длину;
2) от каждого многоугольника к любому другому
можно перейти, проходя по многоугольникам, имеющим отождествленные стороны.
Совокупность многоугольников, удовлетворяющая условиям 1) и 2), называется разверткой.
Нам понадобится эйлерова характеристика развертки, которая определяется аналогично эйлеровой характеристике многогранника:
χ = B-P+Г,
где Г — число многоугольников, входящих в развертку, Р — число сторон многоугольников, при этом отождествляемые стороны считаются за одну, В — число вершин, при этом отождествляемые вершины считаются за одну.
В случае специальной развертки, когда каждый многоугольник развертки — это грань многогранника, ребро развертки — это ребро многогранника, а вершина развертки — вершина многогранника, очевидно, что эйлерова характеристика развертки равна эйлеровой характеристике многогранника.
Но нетрудно показать, что эйлерова характеристика сохраняется при перекраивании данной развертки в изометричную, так что эйлерова характеристика любой развертки многогранника равна характеристике многогранника. Поэтому у развертки выпуклого многогранника эйлерова характеристика равна 2.
Далее, если вершине развертки соответствует настоящая вершина многогранника, то сумма подходящих углов строго меньше 2π. Если же вершине развертки соответствует какая-нибудь точка внутри грани или ребра, то сумма подходящих к вершине углов равна 2π. Поэтому в развертке выпуклого многогранника сумма углов, подходящих к каждой ее вершине, не превышает 2π.
Итак, у всякой развертки выпуклого многогранника эйлерова характеристика равна двум, а сумма углов, подходящих к каждой вершине, не превосходит 2π.
Удивительно то, что эти условия являются не только необходимыми, но и достаточными.
Теорема о развертке (А.Д.Александров). Из всякой развертки, удовлетворяющей условиям:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--