Реферат: Модальная логика. Вероятностная логика

1. Сущность модальной логики

Традиционная или классическая логика, которую мы до сих пор рассматривали, является самой простой и наиболее употребительной логической системой. Она исходит из того, что атомарные (простые) суждения и понятия, из которых строятся рассуждения и которые уже не анализируются, либо истины, либо ложны, но ни то ни другое вместе. Однако многие понятия и суждения повседневных и научных рассуждений не так хорошо укладываются в категории истинных и ложных. Истинностное значение суждения «Вероятно, завтра будет дождь» весьма и весьма не определено. Некоторые логики, начиная с Аристотеля, стали учитывать различие между истинами, являющимися таковыми, так сказать, в силу необходимости, и истинами случайными. Так возникли модальная логика и вероятностная логика.

В отличие от классической логики, приписывающей суждениями и понятием два истинностных значения: истина и ложь, модальная логика оперирует такими истинностными значениями, как «возможно», «необходимо», «невозможно», и т.д. Первую попытку построить модальную логику предпринял Аристотель в своем сочинении «Первая и вторая аналитики» (ей посвящены главы третья и восьмая – двадцать вторая «первой аналитики»). Однако, как подметил Я. Лукосевич (1878–1956), аристотелевское изложение модальной логики не было свободно от недостатков. Ученик Аристотеля Теофраст (370–288 до н. э.) уточнил учение Аристотеля о модальности суждений. Средневековые схоласты развили аристотелевскую модальную силлогистику. Современные исследования в области модальной логики характеризуются стремление построить аксиоматические системы модальной логики. Наиболее известные из них это системы Льюиса, Аккермана и Лукасевича.

Модальная и вероятностная логики – довольно специфические ветви логики. Знакомство с их основами необходимо для понимания методологии научного исследования.

2. Модальность суждений

Под модальностью суждений понимается различия между суждением в зависимости от того, выражают ли они необходимую или вероятностную (случайную) связь между субъектом и предикатом. По модальности суждения делят на три группы: суждения возможности (проблематические), суждения действительности(ассерторические) и суждения необходимости(аподиктические). В суждении возможности отображается возможность наличия или отсутствия признаков у предмета, о котором говорится в данном суждении. Его формула «S возможно есть (не есть) Р ». Таким будет, например, суждение «Возможно в Киеве в апреле этого года будет снег». В суждении действительности констатируется наличие или отсутствие у предмета того или иного признака. Его формулы «S есть (не есть) Р ». Суждение «Киев стоит на Днепре» – это суждение действительности. В суждении необходимости отображается такой признак, который имеется (отсутствует) у предмета при всех условиях. Его формула «S необходимо есть (не есть) Р ». примером суждения необходимости может быть следующее суждение: «Тело, лишенное опоры, падает на Землю».

Суждения возможности, действительности и необходимости делятся по качеству на утвердительные и отрицательные, а также по количеству на частные и общие.

Содержательная типология модальностей строится в зависимости от того, какими факторами обуславливается модальность (термин «модальность» означает обусловленный чем-либо).

В модальной логики различают логические и физические модальности. Логические модальности – это законы логики и математики. В число физических или каузальных (причинных) модальностей входят все законы экспериментальных наук. Так, суждение «Не верно, что Р и не‑Р », «2+2=4 » и т.п. выражают логические модальности, а суждения «PV=RT », «U=IR » и т.п. – физические.

Различают также абсолютные и относительные модальности. К абсолютным модальностям относят законы логики, математики, других наук необходимые сами по себе, независимые от чего бы то ни было. Это скажем, суждения «А=А », «2+3=5 », «S=Vt » и т.д. Относительные модальности являются таковыми, необходимо или не необходимо зависимы от чего-либо.

Такими модальностями будут, например, суждения: «Прямоугольник является квадратом, если его стороны равны», «Вода кипит при 1000 С при атмосферном давлении 760 мм ртутного столба» и т.п.

Логические и физические модальности, независимо от того абсолютны они или относительны, объединяются в алетевтические модальности.

Модальности, характеризующие допустимые (или недопустимые) поступки людей, называются деонтологическими. Они выражаются в суждениях, в которых употребляются такие слова (модальные операторы), как «обязательно», «разрешено», «запрещено», «имеют право» и др. Примерами таких модальностей будут суждения: «На Украине пропаганда войны запрещена», «Граждане Украины имеют право исповедовать любую религию или никакую, быть атеистами» и т.п. Деонтологические модальности являются предметом изучения таких наук как этика, юриспруденция.

Модальности, характеризующие доказательность каких-либо суждений, называются эпистемологическими. В суждениях эпистемологической модальности употребляются такие слова (модальные операторы), как «доказуемо», «опровержимо». Примерами таких модальностей могут быть суждения: «Доказуемо, что на Марсе есть жизнь», «Опровержимо, что свет имеет волновую природу» и т.д.

Эпистемологические модальности по своим свойствам близки к алетевтическим модальностям, при чем оператору «доказуемо», соответствует оператор «необходимо», оператору «опровержимо» – оператор «невозможно».

Наконец, иногда различают модальность de dicto («о речи») относящиеся к суждению в целом и de re («о вещи»), которые относятся к предикату. Так, суждение «Возможно, что на Марсе есть жизнь» будет суждением de dicto, а суждение «На Марсе возможна жизнь» – de re. Однако в большинстве современных системах модальной логики модальности интерпретируются как «абсолютные» логические модальности de dicto.

3. Модальная силогистика

Модальная силлогистика Аристотеля является крайне сложной логической системой как по своему содержанию, так и по числу модусов (их по меньшей мере 137) Аристотель последовательно рассматривает силлогизмы, в которых одна из посылок является проблематической (символически обозначается Рr ) или аподиктической (АР ), или ассерторической (Аs ). Возможное в сочетании этих посылок: 1) Ар Ар ; 2) Ар Аs ; 3) Аs Ар ; 4) Рr Рr ; 5) Рr Аs ; 6) Аs Рr ; 7) Рr Ар ; 8) Ар Рr . Это следует читать так: «1) большая посылка аподиктическая, меньшая – аподиктическая; 2) большая посылка аподиктическая, меньшая – ассерторическая и т.д.». В каждом из этих случаев он строит модусы, подбирая в качестве посылок общеутвердительные, общеотрицательные, частноутвердительные и частноотрицательные суждения. Руководствуясь аналогией с расположением терминов в посылках І, ІІ, ІІІ фигур категорического силлогизма, он решает задачу, какой вывод вытекает из данного сочетания посылок.

Так, подбирая посылки по аналогии с расположением посылок в 1 модусе 1 фигуры АМР Ù ASM→АSP мы получаем задачу: если всякому у необходимо присуще х и всякому z необходимо присуще у , то? в этом случае мы не вправе заменить вопросительный знак общеутвердительным аподиктическим суждением. Мы должны довольствоваться ассерторическим суждением: всякому z присуще х . Еще например, подбирая в четвертой группе (Рr Рr ) посылки согласно модусу АМР Ù YSM→YSP ІІІ фигуры получаем: если всякому у может быть присуще х и некоторым у может присуще z , то? Ответом будет вывод некоторым z может быть присуще х .

В ряде случаев трудно бывает сразу интуитивно решить, какой должен быть вывод при данном подборе посылок, являющимися модальными высказываниями и требуется тщательное изучение этих случаев.

В формализованных аксиоматических системах модальной логики эти вопросы решаются с помощью простой процедуры следования (правда, для введения этой процедуры требуется очень сложный символический язык, который вряд ли смогут понять нематематики).

Имеют место следующие содержательные правила для умозаключений модальности. В каждом истинном модус можно заключать:

1) от необходимости к действительности;

2) от невозможного к недействительному;

3) от необходимого и действительного к возможному;

4) от невозможного и недействительного к не необходимому.

Нельзя заключать:

1) от возможного к действительному;

2) от действительного к необходимому;

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 150
Бесплатно скачать Реферат: Модальная логика. Вероятностная логика