Реферат: Моделирование динамики урожайности зерновых культур в Нижнем Поволжье методом многократного выравнивания
Особенностью методики вычисления средних отклонений от тренда является необходимость учета потерь степеней свободы колебаний на величину, равную числу параметров уравнения тренда (p ).
Учитывая потерю степеней свободы, основные абсолютные показатели колеблемости вычисляются по формулам:
среднее линейное отклонение (3)
среднее квадратическое отклонение (4)
коэффициент колеблемости (5)
Тренд принимаем по результатам многократного скользящего выравнивания. Амплитуда колебаний составила от 3,6 ц/га в 1954 г. до 20,6 ц/га в 1990 г., т.е.17. Среднее линейное отклонение составляет a (t) = 3,88 ц/га. Среднее квадратическое отклонение уровней от тренда составило: s (t) = 4,59 ц/га. Коэффициент колеблемости: v (t) = 38,7%. Колеблемость урожайности сильная.
Близость фактического распределения временного ряда остатков к нормальному позволяет рассчитать доверительные границы для показателей колеблемости и глубже проанализировать динамику урожайности культур.
Для среднего квадратического отклонения доверительная граница существования при α= 0,05 имеет вид: 4,59 ± 0,19 ц/га ().
Средняя ошибка репрезентативности выборочной оценки для коэффициента колеблемости:
(6)
Таким образом, доверительный интервал для коэффициента колеблемости равен 38,71 ± 8,45%.
Близость фактических уровней к тренду характеризует показатель устойчивости, который равен разности между единицей и относительным показателем колеблемости: 1- v ( t). В нашем случае он равен 61,3 %.
Устойчивость во втором смысле характеризует не сами по себе уровни, а процесс их направленного изменения. В качестве показателя устойчивости тенденции используем коэффициент корреляции рангов Ч. Спирмена ρ . В случае полной устойчивости возрастания уровней коэффициент корреляции рангов равен +1. При полной противоположности рангов уровней рангам лет коэффициент Спирмена равен - 1. При хаотическом чередовании рангов уровней коэффициент близок к нулю, это означает неустойчивость какой-либо тенденции. [2]
Коэффициент корреляции Спирмена по данным о динамике урожайности составил: ρ = 0,448. Положительное значение ρ указывает на наличие тенденции повышения уровней, причем устойчивость этой тенденции средняя.
Методика статистического прогноза по тренду и колеблемости основана, на их экстраполяции, т.е. на предположении, что параметры тренда и колебаний сохраняются до прогнозируемого периода. Осуществим прогнозирование урожайности зерновых культур по тренду с учетом колеблемости. За основу прогнозов возьмем параметры, полученные методом многократного скользящего выравнивания. Параллельно покажем и результаты расчетов при однократном выравнивании.
Вычисляем "точечный прогноз" - значение уровня тренда при подстановке в его уравнение номера 2009 г.:
.
Наиболее вероятное значение урожайности зерновых культур Волгоградской области в 2009 г. составит около 14,9 ц/га. Однако параметры тренда, полученные по ограниченному числу уровней ряда, - это лишь выборочные средние оценки, не свободные от влияния распределения колебаний отдельных уровней во времени.
Средние ошибки прогноза положения линейного тренда на год с номером tk рассчитываются по формулам:
для однократного выравнивания:
(7)
для многократного выравнивания:
(8)
В таблице 2 приведены уравнения линейного и параболического трендов, а также значения скорректированного коэффициента детерминации и средней ошибки прогноза положения тренде для каждого из них на 2009 г.
Согласно данным табл.2 наиболее высокое значение скорректированного коэффициента детерминации имеет параболический тренд.
Таблица 2 - Средние ошибки прогноза в зависимости от типа тренда
Тип тренда | Уравнение |
Средняя ошибка прогноза | |
Линейный К-во Просмотров: 124
Бесплатно скачать Реферат: Моделирование динамики урожайности зерновых культур в Нижнем Поволжье методом многократного выравнивания
|