Реферат: Моделирование как метод физической мезомеханики

Предметным называется моделирование, в процессе которого исследование проводится на модели, воспроизводящей главные геометрические, физические, динамические и функциональные характеристики реального объекта или процесса. На этих моделях исследуются процессы, происходящие в оригинале — изучаемом объекте или разработке (исследование параметров строительных конструкций, различных механизмов, транспортных средств и т. п.). В случае, если моделируемый объект и объект одной физической природы, то здесь имеет место физическое моделирование.

Явление (процесс, система) также может изучаться опытным путём исследования какого-либо явления другой физической природы, но при условии, что оно характеризуется теми же математическими зависимостями, что и моделируемое явление. Например, напряженное состояние при пластической и упругой деформации описывается идентичными дифференциальными уравнениями. Такое «предметно-математическое» (аналоговое) моделирование часто используется для исследования одних процессов на примере других, более удобных для изучения, учитывая невозможность реализации многих процессов в лабораторных условиях. Так, электрическое моделирование позволяет изучать на электрических моделях механические, гидродинамические, акустические и другие явления. Электрическое моделирование лежит в основе аналоговых вычислительных машин (сейчас, правда, редко использующихся).

При знаковом моделировании в качестве моделей используются знаковые образования какого-либо вида: графики, схемы, планы, чертежи, формулы, слова и предложения в некотором алфавите (естественного или искусственного языка).

Одним из наиболее важных видов знакового моделирования является математическое (логико-математическое) моделирование, реализуемое средствами языка математики и логики. Знаковые образования и их элементы всегда рассматриваются вместе с определенными преобразованиями, операциями над ними, выполняемые человеком или машиной (преобразования математических, химических, логических формул, преобразования состояний элементов цифровой машины, соответствующих знакам машинного языка, и др.). Современный вид «материальной реализации» знакового (в первую очередь, математического) моделирования - это моделировании на универсальных и специализированных цифровых ЭВМ. Они представляют своего рода «пустые формы», которые можно заполнить описанием любого процесса (явления) в виде его программы, т. е. написанного на машинном языке комплекса команд, по которым машина может «пройти» ход моделируемого процесса.

Работа со знаковым моделированием требует понимание знаковых образований и их преобразований: математические уравнения, формулы и другие выражения применяемого при построении модели научного языка особым образом интерпретируются в терминах той предметной области, к которой относится оригинал. Построение знаковых моделей или их фрагментов можно заменить мысленно-наглядным представлением знаков и действий над ними. Этот вид знакового моделирования обычно называют мысленным моделированием. Хотя, это название часто используют для обозначения «интуитивного» моделирования, в котором не применяются никакие жёстко фиксированные знаковые системы, происходящего в плоскости «модельных представлений». Этот вид моделирования присутствует на начальной стадии любого познавательного процесса.

Прежде всего нужно различать «материальное» (предметное) и «идеальное» моделирование; первое можно назвать как «экспериментальное», второе — как «теоретическое» моделирование, хотя такое разграничение весьма приблизительно из-за взаимосвязи и взаимного влияния этих видов моделирования, а также из-за существующих таких «смежных» форм, как «мысленный эксперимент». «Материальное» моделирование состоит, как было упомянуто раньше, из физического и предметно-математического моделирований, а производным последнего является аналоговое моделирование. «Идеальное» моделирование производится как на уровне общих, порой и не до конца осознанных и четких, «модельных представлений», так и на уровне вполне детализированных знаковых систем; первое - мысленное (интуитивное) моделирование, второе — знаковое (самый важный и распространённый вид — логико-математическое моделирование). Также моделирование на ЭВМ (называемое «компьютерным») является «предметно-математическим по форме, знаковым по содержанию». [4]

Следует понимать различия между моделированием структуры объекта и моделированием его поведения (функционирования протекающих в нем процессов и т. п.) по характеру той части объекта, которая моделируется. Это разграничение сугубо относительно для химии или физики, но оно получает определенный смысл в общественных науках, где различие структуры и функции систем живого принадлежит к числу основопологающих методологических принципов изучения, и в кибернетике, уделяющей особое внимание моделированию функционирования изучаемых систем.

Похожая классификация присутствует у Б.А. Глинского в книге «Моделирование как метод научного исследования», где параллельно обычному делению моделей по методу их реализации, они делятся и по характеру отображения сторон оригинала:

субстанциональные

структурные

функциональные

смешанные

А.Н. Кочергин [11] предлагает рассматривать и такие классификационные признаки, как: природа моделируемых явлений, степень точности, объем отображаемых свойств и др. Но, стоит отметить, что данные признаки не существенны, а следовательно подобные классификации выглядят неосновательно.

3. История развития физической мезомеханики

Проблемы пластической деформации и разрушения твердых тел до середины XX столетия рассматривались исключительно на основе феноменологических подходов механики сплошной среды. Они позволяли успешно решать широкий круг инженерных задач на макромасштабном уровне.

Однако для понимания механизмов пластической деформации и разрушения необходимы были физические подходы на микромасштабном уровне. Такой прорыв физиков в микромир деформируемого твердого тела произошел в пятидесятые годы XX столетия, когда для исследования тонкой структуры кристаллов была использована электронная микроскопия. Последующие полвека физика пластичности и прочности переживала бум, связанный с интенсивным изучением закономерностей возникновения, движения и самоорганизации основного типа деформационных дефектов — дислокаций.

Современная теория дислокаций в кристаллах позволяет качественно объяснить многие закономерности поведения твердых тел в различных условиях нагружения. И первое время казалось, что достаточно преодолеть чисто математические трудности описания сложного поведения дислокационных ансамблей на микроуровне, чтобы теоретически рассчитать макроскопические характеристики деформируемого твердого тела. Однако рассчитать кривую «напряжение – деформация» на основе только микроскопических представлений теории дислокаций не удалось до сих пор. Все попытки прямого перехода от микроподходов физики к макроподходам механики оказались безуспешными.

В последние два десятилетия стало ясно, что подобные попытки в принципе обречены на неудачу.

Нужно было искать нетрадиционный подход. Он формировался продолжительное время на основе накопления экспериментальных данных, которые не укладывались в общепринятые представления. Назревала необходимость рассмотрения процессов, развивающихся в деформируемом твердом теле на промежуточном между микро- и макромасштабном уровнями, так называемом мезоскопическом масштабном уровне. Однако это было осознано не сразу.

Первым проявлением мезоскопических эффектов в коллективном поведении дислокационных ансамблей было обнаружение ячеистых дислокационных структур. Разориентация между ячейками непрерывно возрастала в ходе деформации, что свидетельствовало об их движении как самостоятельных мезообъемов по схеме «сдвиг + поворот». В деформируемом материале на мезомасштабном уровне формировалась диссипативная структура, которая играла сугубо функциональную роль, обеспечивая вихревой характер пластического течения. Но в рамках силовых моделей теории дислокаций ячеистая дислокационная структура долгое время интерпретировалась только как «субструктурное упрочнение».

Важный этап в формировании мезоскопического подхода связан с систематическими исследованиями закономерностей фрагментации среды. Для описания фрагментации был привлечен аппарат теории дисклинаций. Но механизмы фрагментации на первом этапе в основном связывались с большими пластическими деформациями. Они описывались в терминах дефектов кристаллической решетки, а это принято классифицировать как микромасштабный подход к описанию пластической деформации и разрушения.

Идея многомасштабности явлений в твердых телах и их связи с мезоструктурой впервые была высказана в [4]. Применительно к пластической деформации и разрушению многомасштабность процессов была сформулирована в [17] как концепция структурных уровней деформации твердых тел. Более подробно эта концепция была развита в [18].

Структурные уровни деформации относятся к классу мезоскопических масштабов. Поэтому в литературе их часто называют мезомасштабными уровнями деформации. При этом не всегда осознается, что мезоскопический подход является принципиально новой парадигмой, качественно отличной от методологии механики сплошной среды (макромасштабный подход) и теории дислокаций (микромасштабный подход).

Два прошедших десятилетия были связаны с интенсивной разработкой мезомасштабного подхода к исследованию пластической деформации и разрушения твердых тел. Они привели к формированию нового научного направления — физической мезомеханики. Первые шесть международных конференций, посвященных физической мезомеханике, были проведены на базе Института физики прочности и материаловедения СО РАН (в г. Томске и близ озера Байкал). На международной конференции «Mеsofrасturе’96» в г. Томске было предложено проводить данные конференции в разных странах раз в два года. Такие конференции были впоследствии проведены в Израиле, Китайской народной республике, Дании. Внеочередная конференция «Mеsomесhаniсs’2003» будет проведена в Японии, а перед ней Intеrnаtionаl Workshoр on Mеsomесhаniсs пройдет в г. Томске. Конференция «Mеsomесhаniсs’2004» будет проходить в Греции. С 1998 года в г. Томске на базе Института физики прочности и материаловедения СО РАН издается на русском и английском языках международный журнал «Физическая мезомеханика».

4. Моделирование как средство экспериментального исследования

Моделирование всегда используется в комплексе с другими общенаучными и специальными методами. Теснее всего моделирование связано с экспериментом.

Попробуем разобраться, в чем отличие модели в как средства экспериментального исследования в сравнении с иными экспериментальными средствами. Анализ материальных моделей как средств, орудий экспериментирования нуждается в рассмотрении отличий тех экспериментов, в которых применяются модели, от тех, где они не используются. Интересны те изменения, которые вносит в эксперимент использование в нем модели.

Обращение эксперимента в один из главных видов практики, протекавшее одновременно с развитием науки, стало доступным, благодаря широкому применению естествознания в производстве, что в свою очередь стало следствием первой промышленной революции, начавшей эпоху машинного производства.

«Специфика эксперимента как формы практической деятельности в том, что эксперимент выражает активное отношение человека к действительности». [25] На фоне этого, в марксистской гносеологии проводится четкая граница между экспериментом и научным познанием. Хотя всякий эксперимент не обходится без наблюдения как необходимой стадии исследования. Также в эксперименте кроме наблюдения присутствует и такой немаловажный для революционной практики признак как активное вмешательство в ход изучаемого процесса.

Под экспериментом понимается «вид деятельности, предпринимаемой в целях научного познания, открытия объективных закономерностей и состоящий в воздействии на изучаемый объект(процесс) посредством специальных инструментов и приборов». [24, С.301]

Есть особая форма эксперимента, которой характерно применение действующих материальных моделей в качестве специальных средств экспериментального исследования. Это называется модельным экспериментом.

К-во Просмотров: 184
Бесплатно скачать Реферат: Моделирование как метод физической мезомеханики