Реферат: Моделирование процессов ионной имплантации
Далее следует окно, в котором пользователь должен будет выбрать тип решаемой задачи (Рис. 1.2.).
Рис. 1.2. Выбор требуемой задачи (в данном случае выбрана задача №1)
Затем появляется окно, в котором пользователю необходимо ввести все необходимые данные, для ее реализации (Рис. 1.3.).
Затем выводится окно, в котором представлены результаты расчета (Рис. 1.4.).
Конечным результатом данной задачи является форма с отчетом, показанная в приложении.
2. Расчет профилей распределения концентрации внедренных примесей в структурах с двойной имплантацией. Расчет производится путем использования данных из предыдущей задачи, а также имеется набор новых данных: энергия акцепторов, доза и все тоже самое для доноров. Конечным результатом является расчет глубины залегания p-n перехода и построение графической зависимости на основе рассчитанных данных.
Также, при выборе задачи №2 из меню заставки (см. Рис. 1.2.), появляется окно для ввода необходимых данных (Рис. 2.1.).
Рис. 2.1. Окно ввода данных (задача№2)
Затем выводится окно, в котором представлены результаты расчета (Рис. 2.2.).
Рис. 2.2. Результаты расчета задачи№2
3. Расчет ионно-имплантированных структур с покрытием и без покрытия.
Ö Данная задача находится еще в проекте!
3. Математическая модель.
Задача№1:
Глубина проникновения в вещество характеризуется пробегом . Траектория отдельных ионов в кристалле подобны ломанным линиям, каждый прямолинейный участок и полная длина которых отличаются друг от друга. Вся совокупность пробегов отдельных ионов группируется по закону нормального распределения случайной величины со значением среднего полного пробега R и среднеквадратичным отклонением пробега DR. Практическую важность имеет средний нормальный пробег Rp – проекция траектории среднего полного пробега на направление первоначальной скорости иона и его среднеквадратичное отклонение DRp . Для расчета среднего полного пробега R (см) иона с энергией Е (эВ) используют формулы, в которых энергия и пробег выражены в безразмерных единицах e и r соответственно:
Здесь L-нормирующий множитель пробега, см-1 ; F-нормирующий множитель энергии, 1/эВ.
Радиус экранирования заряда ядра атомными электронами (см):
Коэффициент передачи ионом с массой М1 атому с массой М2 максимально возможной энергии при лобовом столкновении:
Коэффициенты, учитывающие торможение, обусловленное ядерным электронным взаимодействием:
Параметры, учитывающие торможение, обусловленные ядерным взаимодействием, с=0.45, d=0.3.
Собственная концентрация атомов в кристалле N2 , см-3 , заряды ядер иона Z1 , атомов мишени Z2 .
Профили распределения концентрации внедренных ионов определяются характером распределения средних нормальных пробегов по глубине облученного слоя. Пучок ионов, попадая в такие вещества, испытывает случайные столкновения с атомами, и распределение пробегов описывается законом распределения случайной величины. Аналогичная ситуация наблюдается и в монокристаллах, если ионный пучок попадает на произвольную ориентированную поверхность пластины относительно кристаллографических направлений с малыми индексами, например вдоль оси (763). Такое внедрение называют не ориентированным. В этом случае профиль внедренных атомов описывается, как и для аморфных веществ, кривой Гаусса:
Максимум концентрации примеси в отличие от случая введения ее методом диффузии залегает не на поверхности, а на глубине x=Rp :
Задача№2:
К примеру, для создания транзистора типа n-p-n в эпитаксиальный слой с электропроводностью n- типа производят последовательную имплантацию ионов акцепторной примеси с энергией Еа и дозой Nа для формирования базовой области и ионов донорной примеси с энергией Ед и дозой Nд для формирования эмиттера, причем Rpa >Rpd , а Cmax a < Cmax d . Суммарное распределение примеси описывается выражением:
Глубину залегания коллекторного перехода определяем из условия:
откуда
где
Глубину залегания эмиттерного перехода с учетом того, что С(Xj э ) >>Cb , определяем из условия:
откуда
где
4. Программное обеспечение:
Разработанная расчетно-информационная система предназначена для работы в среде Windows. Windows разработана корпорацией Microsoft,дата первого поступления в продажу 1995 год и крупнейшие мировые компании организовали выпуск различных приложений, использующих богатые возможности новой операционной системы.
Эффективность работы компьютера определяется не только его аппаратным обеспечением: моделью процессора, размерами жесткого диска, оперативной памяти и т. п., но и установленной на нем оперативной системой. Оперативная система это программа, которая осуществляет управление всеми устройствами компьютера и процессом обработки на нем информации.