Реферат: Моделирование в системах управления

При моделировании работы одной ЭВМ с помощью ЭВМ иной конструкции используют понятия имитатор, симулятор и эмулятор. Под этими терминами понимаются программы или устройства, имитирующие работу других ЭВМ. Например, существуют эмуляторы однокристальной ЭВМ К1816ВЕ35, бытовых компьютеров БК‑0010, Spectrum ZX, игровых приставок. Они позволяют моделировать их работу на компьютерах фирмы IBM.

Разработано много компьютерных симуляторов спортивных игр (футбол, баскетбол, гольф, бильярд, теннис, шахматы…), полетов на космических кораблях (космические симуляторы), самолетах и вертолетах, гонок на автомобилях, игр на фондовой бирже, боевых сражений, подводного плавания. Эти симуляторы иногда называют имитаторами.

Создать исчерпывающую классификацию моделей достаточно сложно, поэтому рассмотрим наиболее часто употребляемые определения моделей.

Процесс моделирования начинается с создания концептуальной модели.

Концептуальная модель (содержательная) — это абстрактная модель, определяющая структуру системы (элементы и связи).

В концептуальной модели обычно в словесной (вербальной) форме приводятся самые главные сведения об объекте исследования, основных элементах и важнейших связях между элементами. Процесс создания концептуальной модели в настоящее время не формализован: не существует точных правил ее создания.

Основная проблема при создании концептуальной модели заключается в нахождении компромисса между компактностью модели и ее точностью (адекватностью). Имеется множество теоретических проработок этой проблемы, но их трудно применить для решения каждой новой задачи. Поэтому разработчик модели, руководствуясь своими знаниями, оценочными расчетами, опытом, интуицией, мнением экспертов, должен принять решение об исключении какого-либо элемента или связи из модели, изъятии из рассмотрения второстепенных факторов, воздействующих на объект.

Термин "адекватна" (происходит от лат. adaequatus — приравненный, равный) означает верное воспроизведение в модели связей и отношений объективного мира. Этим термином характеризуют качество созданной модели.

Процесс создания концептуальной модели, вероятно, никогда не сможет быть полностью формализован. Трудно придумать набор простых правил, выполняя которые, можно создать хорошую концептуальную модель. Именно в связи с этим иногда говорят, что моделирование является не только наукой, но и искусством.

Концептуальную модель, содержащую основные сведения об объекте исследований, порой называют информационной моделью.

В научной литературе широко используется термин математическая модель (ММ). ММ — описание объекта исследования, выполненное с помощью математической символики.

Для составления ММ можно использовать любые математические средства — дифференциальное и интегральное исчисления, регрессионный анализ, теорию вероятностей, математическую статистику и т. д. Математическая модель представляет собой совокупность формул, уравнений, неравенств, логических условий и т.д. Использованные в ММ математические соотношения определяют процесс изменения состояния объекта исследования в зависимости от его параметров, входных сигналов, начальных условий и времени. По существу, вся математика создана для формирования математических моделей.

О большом значении математики для всех других наук (в том числе и моделирования) говорит следующий факт. Великий английский физик И.Ньютон (1643-1727 г.г.) в середине 17-го века познакомился с работами Рене Декарта и Пьера Гассенди. В этих работах утверждалось, что все строение мира может быть описано математическими формулами. Под влиянием этих трудов И.Ньютон стал усиленно изучать математику. Сделанный им вклад в физику и математику широко известен.

1.1 Математическое моделирование

Математическое моделирование — метод изучения объекта исследования, основанный на создании его математической модели и использовании её для получения новых знаний, совершенствования объекта исследования или управления объектом.

Математическое моделирование можно подразделить на аналитическое и компьютерное (машинное) моделирование.

При аналитическом моделировании ученый — теоретик получает результат "на кончике пера" в процессе раздумий, размышлений, умозаключений. Формирование модели производится в основном с помощью точного математического описания объекта исследования.

Классическим примером аналитического моделирования является открытие планеты Нептун на основании теоретического анализа движения планеты Уран. Расчеты выполнил французский астроном У.Леверье. Обнаружил планету Нептун немецкий астроном Г.Галле в точке небесной сферы, координаты которой вычислил У.Леверье.

При компьютерном моделировании математическая модель создается и анализируется с помощью вычислительной техники. В этом случае нередко используются приближенные (численные) методы расчета. При компьютерном моделировании используются наиболее прогрессивные информационные технологии, например, виртуальная реальность. При этом моделирование медицинской операции вызывает иллюзию реально происходящего события. Моделирование игровых ситуаций сопровождается мультимедийными эффектами (звуками, видеоэффектами).

Компьютерная модель – модель, реализованная на одном из языков программирования (программа для ЭВМ).

Рассмотрим еще два понятия: полная математическая модель и макромодель.

Полная математическая модель — это модель, отражающая состояния как моделируемой системы, так и всех ее внутренних элементов. Полная ММ электронного усилителя позволяет определить потенциалы всех узлов схемы и токи через все радиоэлементы (т. е. можно определить фазовые переменные для всех элементов модели).

Макромодель проще полной математической модели.

Макромодель адекватна в отношении внешних свойств объекта исследования. Однако, в отличие от полной математической модели, макромодель не описывает внутреннее состояние отдельных элементов. Например, макромодель радиоэлектронного усилителя определяет, как изменяются сигналы на входах (X и Z) и выходе (Y) устройства, но не дает сведения о том, как сигналы изменяются на каждом радиоэлементе (резисторах, транзисторах и т. д.), находящемся внутри усилителя. Другими словами, полная математическая модель описывает и систему, и элементы, входящие в систему. Макромодель же описывает только систему моделирования. Макромодель представляет объект исследования в виде "черного ящика", содержимое которого неизвестно.

Модель называется статической, если среди входных воздействий X и Z нет параметров, зависящих от времени. Статическая модель в каждый момент времени дает лишь застывшую "фотографию" объекта исследования, ее срез. С помощью статических моделей удобно изучать, например, работу логических элементов.

Модель называется динамической, если входные воздействия изменяются во времени, или нужно определить, как изменяется состояние объекта исследования с изменением времени. С помощью динамических моделей исследуют, в частности, переходные процессы в электрических цепях.

Модель называется детерминированной, если каждому набору входных параметров всегда соответствует единственный набор выходных параметров. В противном случае модель называется недетерминированной (стохастической, вероятностной). В стохастических моделях используются генераторы случайных чисел с различными законами распределения.

При моделировании часто оперируют следующими категориями: фазовая переменная, элемент и система. Рассмотрим эти понятия.

Фазовая переменная — это величина, характеризующая физическое или информационное состояние моделируемого объекта.

К-во Просмотров: 212
Бесплатно скачать Реферат: Моделирование в системах управления