Реферат: Моделювання однофазної системи
Щільність розподілу:
; ; ; (2 )
(3)
де l - параметр розподілу, .
Потрібно знайти формулу для моделювання випадкової величини X за допомогою рівномірно розподіленої випадкової величини .
Знаходимо обернену стосовно F функцію. Маємо :
(4)
Так, як 1-R має той же розподіл, що і R , то зручніше при знаходженні значень випадкової величини X користуватися формулою :
(5)
Випадкове число з експонентним розподілом обчислюється по формулі
Розглянемо, як використовуючи метод оберненої функції, можна змоделювати випадкову величину, розподілену за експоненційним законом. Нехай λ=1. Виконаємо апроксимацію експоненційного розподілу лінійними ділянками, щоб можна було використовувати її для моделювання методом оберненої функції. Для апроксимації достатньо 24-х точок.
У разі необхідності моделювання випадкової величини Х, роходіленої за експоненційним розподілом з λ≠1, яка використовується як затримка у часі (наприклад, для моделювання пуасонівського потоку надходження заявок), виконується наступним чином:
1) генерується значення випадкової величини, розподіленої за експоненційним розподілом з λ=1;
2) знаходиться добуток цього значення та математичне сподівання випадкової величини Х; у результаті отримаємо шукану послідовність значень шуканої величини Х.
8.Блок-схеми
Загальна блок-схема програми.
Блок-схема потоку обслуговування.
Блок-схема г нератора випадкових чисел.
Генератор випадкових чисел з експоненційним законом розподілу(в програмі використовується з попередньо згенерованим рівномірно розподіленим випадковим числом) .
Де: r – генерується на попередньому генераторі.
9.Технічні характеристики
1. Intel – сумісний процесор з тактовою частотою >50 Мгц
2. IBM – сумісний монітор
3. IBM-сумісний відео адаптер
4. Операційна система Windows 95 і вище.
5. Пакет розробки програмного забезпечення MicrosoftVisualStudio 6.0
6. 64 МbRAM
7.IBM-сумісна клавіатура
10 . Результати моделювання
Дослід 1.